PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of narLink to Publisher's site
 
Nucleic Acids Res. 1988 July 25; 16(14B): 7119–7131.
PMCID: PMC338355

The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence.

Abstract

The RAD18 gene of Saccharomyces cerevisiae is required for postreplication repair of UV damaged DNA. We have isolated the RAD18 gene, determined its nucleotide sequence and examined if deletion mutations of this gene show different or more pronounced phenotypic effects than the previously described point mutations. The RAD18 gene open reading frame encodes a protein of 487 amino acids, with a calculated molecular weight of 55,512. The RAD18 protein contains three potential zinc finger domains for nucleic acid binding, and a putative nucleotide binding sequence that is present in many proteins that bind and hydrolyze ATP. The DNA binding and nucleotide binding activities could enable the RAD18 protein to bind damaged sites in the template DNA with high affinity. Alternatively, or in addition, RAD18 protein may be a transcriptional regulator. The rad18 deletion mutation resembles the previously described point mutations in its effects on viability, DNA repair, UV mutagenesis, and sporulation.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.1M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Lawrence CW. Mutagenesis in Saccharomyces cerevisiae. Adv Genet. 1982;21:173–254. [PubMed]
  • Prakash L. Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol Gen Genet. 1981;184(3):471–478. [PubMed]
  • di Caprio L, Cox BS. DNA synthesis in UV-irradiated yeast. Mutat Res. 1981 Jun;82(1):69–85. [PubMed]
  • Resnick MA. Genetic control of radiation sensitivity in Saccharomyces cerevisiae. Genetics. 1969 Jul;62(3):519–531. [PubMed]
  • Game JC, Mortimer RK. A genetic study of x-ray sensitive mutants in yeast. Mutat Res. 1974 Sep;24(3):281–292. [PubMed]
  • Quah SK, von Borstel RC, Hastings PJ. The origin of spontaneous mutation in Saccharomyces cerevisiae. Genetics. 1980 Dec;96(4):819–839. [PubMed]
  • Boram WR, Roman H. Recombination in Saccharomyces cerevisiae: a DNA repair mutation associated with elevated mitotic gene conversion. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2828–2832. [PubMed]
  • Montelone BA, Prakash S, Prakash L. Recombination and mutagenesis in rad6 mutants of Saccharomyces cerevisiae: evidence for multiple functions of the RAD6 gene. Mol Gen Genet. 1981;184(3):410–415. [PubMed]
  • Reynolds P, Weber S, Prakash L. RAD6 gene of Saccharomyces cerevisiae encodes a protein containing a tract of 13 consecutive aspartates. Proc Natl Acad Sci U S A. 1985 Jan;82(1):168–172. [PubMed]
  • Morrison A, Miller EJ, Prakash L. Domain structure and functional analysis of the carboxyl-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae. Mol Cell Biol. 1988 Mar;8(3):1179–1185. [PMC free article] [PubMed]
  • Berg JM. Potential metal-binding domains in nucleic acid binding proteins. Science. 1986 Apr 25;232(4749):485–487. [PubMed]
  • Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. [PubMed]
  • Mortimer RK, Schild D. Genetic map of Saccharomyces cerevisiae, edition 9. Microbiol Rev. 1985 Sep;49(3):181–213. [PMC free article] [PubMed]
  • Olson MV, Dutchik JE, Graham MY, Brodeur GM, Helms C, Frank M, MacCollin M, Scheinman R, Frank T. Random-clone strategy for genomic restriction mapping in yeast. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7826–7830. [PubMed]
  • McKee RH, Lawrence CW. Genetic analysis of gamma-ray mutagenesis in yeast. I. Reversion in radiation-sensitive strains. Genetics. 1979 Oct;93(2):361–373. [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PubMed]
  • Biggin MD, Gibson TJ, Hong GF. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963–3965. [PubMed]
  • Madura K, Prakash S. Nucleotide sequence, transcript mapping, and regulation of the RAD2 gene of Saccharomyces cerevisiae. J Bacteriol. 1986 Jun;166(3):914–923. [PMC free article] [PubMed]
  • Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. [PubMed]
  • Orr-Weaver TL, Szostak JW, Rothstein RJ. Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol. 1983;101:228–245. [PubMed]
  • Kuo CL, Campbell JL. Cloning of Saccharomyces cerevisiae DNA replication genes: isolation of the CDC8 gene and two genes that compensate for the cdc8-1 mutation. Mol Cell Biol. 1983 Oct;3(10):1730–1737. [PMC free article] [PubMed]
  • Struhl K. Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8419–8423. [PubMed]
  • Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. [PubMed]
  • Gannon F, O'Hare K, Perrin F, LePennec JP, Benoist C, Cochet M, Breathnach R, Royal A, Garapin A, Cami B, et al. Organisation and sequences at the 5' end of a cloned complete ovalbumin gene. Nature. 1979 Mar 29;278(5703):428–434. [PubMed]
  • Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev. 1983 Mar;47(1):1–45. [PMC free article] [PubMed]
  • Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. [PMC free article] [PubMed]
  • Zaret KS, Sherman F. DNA sequence required for efficient transcription termination in yeast. Cell. 1982 Mar;28(3):563–573. [PubMed]
  • Bennetzen JL, Hall BD. Codon selection in yeast. J Biol Chem. 1982 Mar 25;257(6):3026–3031. [PubMed]
  • Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 1985 Jun;4(6):1609–1614. [PubMed]
  • Husain I, Van Houten B, Thomas DC, Sancar A. Sequences of Escherichia coli uvrA gene and protein reveal two potential ATP binding sites. J Biol Chem. 1986 Apr 15;261(11):4895–4901. [PubMed]
  • Finch PW, Emmerson PT. The nucleotide sequence of the uvrD gene of E. coli. Nucleic Acids Res. 1984 Jul 25;12(14):5789–5799. [PMC free article] [PubMed]
  • Finch PW, Storey A, Chapman KE, Brown K, Hickson ID, Emmerson PT. Complete nucleotide sequence of the Escherichia coli recB gene. Nucleic Acids Res. 1986 Nov 11;14(21):8573–8582. [PMC free article] [PubMed]
  • Reynolds P, Higgins DR, Prakash L, Prakash S. The nucleotide sequence of the RAD3 gene of Saccharomyces cerevisiae: a potential adenine nucleotide binding amino acid sequence and a nonessential acidic carboxyl terminal region. Nucleic Acids Res. 1985 Apr 11;13(7):2357–2372. [PMC free article] [PubMed]
  • Naumovski L, Friedberg EC. A DNA repair gene required for the incision of damaged DNA is essential for viability in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4818–4821. [PubMed]
  • Sung P, Prakash L, Weber S, Prakash S. The RAD3 gene of Saccharomyces cerevisiae encodes a DNA-dependent ATPase. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6045–6049. [PubMed]
  • Sung P, Prakash L, Matson SW, Prakash S. RAD3 protein of Saccharomyces cerevisiae is a DNA helicase. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8951–8955. [PubMed]
  • Devereux J, Haeberli P, Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. [PMC free article] [PubMed]
  • Jentsch S, McGrath JP, Varshavsky A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature. 1987 Sep 10;329(6135):131–134. [PubMed]
  • Ozkaynak E, Finley D, Solomon MJ, Varshavsky A. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J. 1987 May;6(5):1429–1439. [PubMed]
  • Lu C, Scheuermann RH, Echols H. Capacity of RecA protein to bind preferentially to UV lesions and inhibit the editing subunit (epsilon) of DNA polymerase III: a possible mechanism for SOS-induced targeted mutagenesis. Proc Natl Acad Sci U S A. 1986 Feb;83(3):619–623. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press