PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 June 1; 68(Pt 6): o1956–o1957.
Published online 2012 May 31. doi:  10.1107/S1600536812024257
PMCID: PMC3379506

4-{1-[4-(4-Bromo­phen­yl)-1,3-thia­zol-2-yl]-5-(4-fluoro­phen­yl)-4,5-dihydro-1H-pyrazol-3-yl}-5-methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazole

Abstract

In the title compound, C28H22BrFN6S, the central pyrazole ring has an envelope conformation, with the methine C atom being the flap atom. The dihedral angles between the least-squares plane through this ring and the adjacent thia­zole [18.81 (15)°] and triazole [1.83 (16)°] rings indicate a twist in the mol­ecule. A further twist is evident by the dihedral angle of 64.48 (16)° between the triazole ring and the attached benzene ring. In the crystal, C—H(...)N, C—H(...)F, C—H(...)π and π–π inter­actions [occurring between the thia­zole and triazole rings, centroid–centroid distance = 3.571 (2) Å] link mol­ecules into a three-dimensional architecture. The sample studied was a non-merohedral twin; the minor twin component refined to 47.16 (7)%.

Related literature  

For the biological activity of related compounds, see: Abdel-Wahab et al. (2009 [triangle], 2012a [triangle]). For a related pyrazolyl-1,2,3-triazole structure, see: Abdel-Wahab et al. (2012b [triangle]). For the deconvolution of twinned data, see: Spek (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-o1956-scheme1.jpg

Experimental  

Crystal data  

  • C28H22BrFN6S
  • M r = 573.49
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-68-o1956-efi1.jpg
  • a = 11.3476 (7) Å
  • b = 14.0549 (8) Å
  • c = 15.954 (7) Å
  • V = 2544.5 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.74 mm−1
  • T = 100 K
  • 0.40 × 0.20 × 0.10 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector
  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011 [triangle]) T min = 0.695, T max = 1.000
  • 7265 measured reflections
  • 5293 independent reflections
  • 4819 reflections with I > 2σ(I)
  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.077
  • S = 1.02
  • 5293 reflections
  • 336 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.50 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2028 Friedel pairs
  • Flack parameter: 0.001 (7)

Data collection: CrysAlis PRO (Agilent, 2011 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812024257/su2440sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024257/su2440Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812024257/su2440Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

The crystal structure determination of the title compound, 4-(4-bromophenyl)-2-(5-(4-fluorophenyl)-3-(5-methyl-1-p-tolyl-1H-1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole (I), was investigated in relation to the established biological activities exhibited by 3-(benzofuran-2-yl)-4,5-dihydro-5-phenyl-1-(4-phenylthiazol-2-yl)-1H-pyrazole and 1,2,3-triazol-4-yl-pyrazolylthiazoles (Abdel-Wahab et al. 2012a; Abdel-Wahab et al. 2009) and related structural studies (Abdel-Wahab et al., 2012b).

The molecule of (I), Fig. 1, comprises a sequence of three linked five-membered rings with a benzene ring linked to each of these. The central pyrazole ring (r.m.s. deviation = 0.087 Å) adopts an envelope conformation with the methine-C13 atom being the flap atom. The molecule is twisted as seen in the dihedral angles between the least-squares plane through the pyrazole ring and the thiazole (r.m.s. deviation = 0.008 Å) and triazole (r.m.s. deviation = 0.004 Å) rings are 18.81 (15) and 1.83 (16)°, respectively. While the attached benzene ring to the thiazole ring is almost co-planar [dihedral angle = 7.00 (13)°], the benzene ring linked to the triazole ring is twisted out of its plane [dihedral angle = 64.48 (16)°].

In the crystal, C—H···N and C—H···π (Table 1), as well as π—π interactions occurring between the thiazole and triazole [inter-centroid distance = 3.571 (2) Å, angle of inclination = 5.08 (15)° for symmetry operation: -1/2 + x, 3/2 - y, -z] link molecules into layers in the ac plane. These layers are linked by C—H···F interactions (Fig. 2 and Table 1).

Experimental

The title compound was prepared according to the reported method (Abdel-Wahab et al., 2012a). Crystals were obtained from its DMF solution by slow evaporation at room temperature.

Refinement

C-bound H-atoms were placed in calculated positions [N—H = 0.88 Å and C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2Ueq(N,C) or = 1.5Ueq(C-methyl)] and were included in the refinement in the riding model approximation. The sample studied is a non-merohedral twin and a full sphere of reflections was measured. As it was not possible to separate the diffraction spots in two domains, the twin domains were separated using the TwinRotMat routine of PLATON (Spek, 2009). The minor twin component refined to 47.16 (7)%. Two reflections, i.e. (-11 -8 2) and (0 -2 4), were omitted owing to poor agreement. The maximum and minimum residual electron density peaks of 1.44 and 0.53 e Å-3, respectively, were located 0.51 Å and 0.81 Å from the H13C and F9 atoms, respectively.

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
Fig. 2.
A view in projection down the c axis of the unit-cell contents for (I). The C—H···N, C—H···F, C—H···π and π—π interactions ...

Crystal data

C28H22BrFN6SF(000) = 1168
Mr = 573.49Dx = 1.497 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3622 reflections
a = 11.3476 (7) Åθ = 2.6–27.5°
b = 14.0549 (8) ŵ = 1.74 mm1
c = 15.954 (7) ÅT = 100 K
V = 2544.5 (12) Å3Prism, light-brown
Z = 40.40 × 0.20 × 0.10 mm

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector5293 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4819 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.6°
ω scanh = −14→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)k = −17→12
Tmin = 0.695, Tmax = 1.000l = −20→11
7265 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.077w = 1/[σ2(Fo2) + (0.0325P)2 + 0.2812P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5293 reflectionsΔρmax = 0.36 e Å3
336 parametersΔρmin = −0.50 e Å3
0 restraintsAbsolute structure: Flack (1983), 2028 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.001 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.23440 (3)0.94410 (2)−0.361341 (19)0.02124 (8)
S10.66530 (6)0.86176 (5)0.08004 (5)0.01822 (17)
F10.94395 (17)1.26252 (12)−0.25372 (13)0.0294 (5)
N11.2170 (2)0.77775 (16)0.21438 (15)0.0152 (5)
N21.2929 (2)0.78394 (16)0.14807 (16)0.0174 (5)
N31.2310 (2)0.81441 (16)0.08489 (15)0.0154 (5)
N40.9210 (2)0.87452 (17)0.06940 (16)0.0171 (5)
N50.8648 (2)0.91513 (18)0.00017 (16)0.0170 (5)
N60.6859 (2)0.91897 (16)−0.07364 (16)0.0155 (5)
C11.2602 (3)0.7492 (2)0.29537 (18)0.0167 (6)
C21.2594 (3)0.8146 (2)0.36070 (19)0.0208 (6)
H21.22650.87610.35320.025*
C31.3073 (3)0.7883 (2)0.4366 (2)0.0255 (7)
H31.30620.83220.48180.031*
C41.3573 (3)0.6990 (2)0.4485 (2)0.0247 (7)
C51.3549 (3)0.6346 (2)0.3825 (2)0.0247 (8)
H51.38690.57280.39020.030*
C61.3067 (3)0.6589 (2)0.3059 (2)0.0204 (7)
H61.30550.61440.26110.024*
C71.4158 (3)0.6738 (3)0.5301 (2)0.0366 (9)
H7A1.39460.60860.54580.055*
H7B1.38950.71790.57390.055*
H7C1.50160.67850.52380.055*
C81.0046 (3)0.8013 (2)0.2515 (2)0.0178 (6)
H8A1.00480.74100.28230.027*
H8B0.93100.80720.21990.027*
H8C1.01120.85430.29120.027*
C91.1057 (3)0.8035 (2)0.1929 (2)0.0151 (6)
C101.1170 (3)0.8273 (2)0.10935 (19)0.0142 (6)
C111.0306 (3)0.8628 (2)0.05071 (18)0.0138 (6)
C121.0619 (3)0.8935 (2)−0.03664 (19)0.0170 (6)
H12A1.10130.8416−0.06780.020*
H12B1.11380.9501−0.03610.020*
C130.9411 (2)0.9169 (2)−0.07472 (19)0.0148 (6)
H130.91710.8647−0.11380.018*
C140.9378 (2)1.0115 (2)−0.12096 (18)0.0159 (6)
C150.8894 (3)1.0932 (2)−0.0868 (2)0.0196 (7)
H150.85471.0910−0.03260.024*
C160.8913 (3)1.1791 (2)−0.1314 (2)0.0241 (7)
H160.85761.2353−0.10850.029*
C170.9427 (3)1.1797 (2)−0.2088 (2)0.0208 (7)
C180.9940 (3)1.1004 (2)−0.2437 (2)0.0188 (7)
H181.03101.1036−0.29710.023*
C190.9906 (3)1.0161 (2)−0.1994 (2)0.0177 (6)
H191.02470.9604−0.22290.021*
C200.7446 (3)0.90135 (18)−0.00607 (17)0.0152 (6)
C210.5397 (3)0.8702 (2)0.0193 (2)0.0190 (7)
H210.46230.85600.03820.023*
C220.5671 (3)0.8999 (2)−0.0593 (2)0.0171 (7)
C230.4858 (2)0.91170 (19)−0.1308 (2)0.0155 (6)
C240.5272 (2)0.9486 (2)−0.20621 (19)0.0180 (6)
H240.60730.9676−0.21050.022*
C250.4538 (3)0.9581 (2)−0.27493 (19)0.0197 (7)
H250.48310.9831−0.32620.024*
C260.3367 (3)0.9305 (2)−0.26774 (19)0.0168 (6)
C270.2930 (3)0.8929 (2)−0.1943 (2)0.0204 (7)
H270.21290.8736−0.19060.025*
C280.3677 (3)0.8836 (2)−0.1253 (2)0.0197 (7)
H280.33830.8581−0.07430.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02349 (14)0.02282 (14)0.01741 (15)−0.00056 (13)−0.00417 (13)0.00095 (13)
S10.0157 (3)0.0244 (4)0.0145 (4)−0.0021 (3)0.0021 (3)0.0024 (3)
F10.0288 (10)0.0224 (9)0.0372 (12)−0.0012 (9)−0.0056 (10)0.0159 (9)
N10.0152 (12)0.0186 (11)0.0117 (13)−0.0003 (10)−0.0012 (10)−0.0026 (10)
N20.0187 (12)0.0181 (11)0.0153 (14)0.0005 (10)0.0004 (11)−0.0009 (11)
N30.0176 (12)0.0168 (11)0.0119 (12)0.0000 (11)−0.0006 (11)0.0005 (10)
N40.0181 (12)0.0197 (12)0.0137 (14)0.0004 (11)−0.0021 (11)0.0045 (11)
N50.0126 (11)0.0257 (13)0.0128 (13)−0.0008 (10)0.0031 (10)0.0055 (11)
N60.0126 (11)0.0174 (12)0.0166 (13)0.0018 (10)0.0022 (10)0.0014 (10)
C10.0150 (13)0.0222 (13)0.0130 (14)−0.0009 (13)−0.0013 (13)0.0050 (11)
C20.0214 (14)0.0231 (13)0.0178 (15)0.0020 (12)−0.0002 (16)−0.0005 (13)
C30.0273 (17)0.0338 (18)0.0153 (17)−0.0043 (15)−0.0011 (14)−0.0030 (14)
C40.0226 (16)0.0355 (18)0.0161 (17)−0.0044 (15)−0.0018 (13)0.0095 (15)
C50.0236 (15)0.0221 (15)0.028 (2)0.0002 (14)−0.0025 (14)0.0073 (14)
C60.0188 (14)0.0219 (15)0.0204 (17)−0.0012 (13)−0.0020 (13)−0.0002 (13)
C70.033 (2)0.057 (2)0.020 (2)−0.0065 (19)−0.0102 (17)0.0115 (18)
C80.0159 (13)0.0236 (15)0.0139 (15)0.0004 (12)0.0026 (12)0.0021 (13)
C90.0143 (14)0.0143 (14)0.0166 (16)−0.0011 (12)0.0012 (12)−0.0013 (12)
C100.0175 (13)0.0129 (13)0.0123 (15)−0.0016 (12)0.0007 (12)0.0018 (11)
C110.0160 (13)0.0145 (13)0.0109 (15)−0.0034 (12)0.0020 (12)−0.0032 (12)
C120.0147 (14)0.0203 (15)0.0161 (16)0.0012 (12)0.0024 (13)0.0046 (13)
C130.0146 (13)0.0171 (14)0.0128 (15)−0.0004 (12)0.0007 (12)0.0010 (12)
C140.0116 (13)0.0197 (14)0.0165 (17)−0.0018 (12)−0.0034 (12)0.0045 (12)
C150.0190 (14)0.0231 (15)0.0167 (17)0.0005 (13)0.0012 (13)0.0015 (13)
C160.0200 (14)0.0212 (15)0.031 (2)0.0050 (12)−0.0010 (16)−0.0028 (16)
C170.0183 (15)0.0195 (15)0.0244 (18)−0.0034 (13)−0.0075 (14)0.0130 (14)
C180.0135 (14)0.0278 (16)0.0152 (16)−0.0032 (13)−0.0026 (13)0.0070 (14)
C190.0140 (14)0.0199 (14)0.0191 (17)0.0012 (12)−0.0035 (13)−0.0010 (13)
C200.0152 (14)0.0159 (12)0.0146 (14)0.0030 (12)0.0020 (12)0.0017 (11)
C210.0154 (14)0.0218 (15)0.0198 (17)−0.0011 (13)0.0004 (13)0.0017 (14)
C220.0163 (14)0.0161 (14)0.0190 (17)0.0017 (12)−0.0014 (13)−0.0002 (13)
C230.0152 (13)0.0138 (12)0.0175 (16)0.0025 (11)0.0003 (13)0.0018 (13)
C240.0150 (13)0.0164 (14)0.0226 (16)−0.0011 (13)0.0009 (12)0.0011 (14)
C250.0217 (14)0.0193 (15)0.0180 (16)0.0031 (13)0.0014 (13)0.0037 (13)
C260.0184 (14)0.0163 (14)0.0158 (15)0.0043 (13)−0.0044 (12)−0.0001 (12)
C270.0145 (15)0.0253 (16)0.0215 (17)−0.0012 (12)0.0009 (13)−0.0001 (13)
C280.0185 (14)0.0243 (15)0.0161 (18)0.0005 (12)0.0029 (13)0.0016 (13)

Geometric parameters (Å, º)

Br1—C261.901 (3)C8—H8C0.9800
S1—C211.728 (3)C9—C101.381 (4)
S1—C201.734 (3)C10—C111.445 (4)
F1—C171.367 (3)C11—C121.501 (4)
N1—C91.358 (4)C12—C131.535 (4)
N1—N21.367 (3)C12—H12A0.9900
N1—C11.439 (4)C12—H12B0.9900
N2—N31.300 (3)C13—C141.521 (4)
N3—C101.363 (4)C13—H131.0000
N4—C111.290 (4)C14—C191.389 (4)
N4—N51.397 (3)C14—C151.385 (4)
N5—C201.381 (4)C15—C161.402 (4)
N5—C131.475 (4)C15—H150.9500
N6—C201.291 (4)C16—C171.365 (5)
N6—C221.394 (4)C16—H160.9500
C1—C61.384 (4)C17—C181.376 (4)
C1—C21.390 (4)C18—C191.380 (4)
C2—C31.377 (4)C18—H180.9500
C2—H20.9500C19—H190.9500
C3—C41.390 (5)C21—C221.357 (4)
C3—H30.9500C21—H210.9500
C4—C51.388 (5)C22—C231.476 (4)
C4—C71.504 (4)C23—C241.392 (4)
C5—C61.383 (4)C23—C281.400 (4)
C5—H50.9500C24—C251.383 (4)
C6—H60.9500C24—H240.9500
C7—H7A0.9800C25—C261.390 (4)
C7—H7B0.9800C25—H250.9500
C7—H7C0.9800C26—C271.378 (4)
C8—C91.480 (4)C27—C281.396 (4)
C8—H8A0.9800C27—H270.9500
C8—H8B0.9800C28—H280.9500
C21—S1—C2087.81 (15)C13—C12—H12B111.3
C9—N1—N2112.0 (2)H12A—C12—H12B109.2
C9—N1—C1128.1 (3)N5—C13—C14113.2 (2)
N2—N1—C1119.9 (2)N5—C13—C12101.5 (2)
N3—N2—N1106.3 (2)C14—C13—C12113.6 (2)
N2—N3—C10109.5 (2)N5—C13—H13109.4
C11—N4—N5108.0 (2)C14—C13—H13109.4
C20—N5—N4116.8 (2)C12—C13—H13109.4
C20—N5—C13121.5 (3)C19—C14—C15119.2 (3)
N4—N5—C13112.3 (2)C19—C14—C13117.9 (3)
C20—N6—C22109.0 (2)C15—C14—C13122.9 (3)
C6—C1—C2121.2 (3)C14—C15—C16120.5 (3)
C6—C1—N1119.6 (3)C14—C15—H15119.7
C2—C1—N1119.1 (3)C16—C15—H15119.7
C3—C2—C1118.6 (3)C17—C16—C15118.1 (3)
C3—C2—H2120.7C17—C16—H16120.9
C1—C2—H2120.7C15—C16—H16120.9
C2—C3—C4121.6 (3)C16—C17—F1119.0 (3)
C2—C3—H3119.2C16—C17—C18122.8 (3)
C4—C3—H3119.2F1—C17—C18118.2 (3)
C3—C4—C5118.5 (3)C17—C18—C19118.4 (3)
C3—C4—C7120.8 (3)C17—C18—H18120.8
C5—C4—C7120.8 (3)C19—C18—H18120.8
C6—C5—C4121.2 (3)C14—C19—C18120.9 (3)
C6—C5—H5119.4C14—C19—H19119.6
C4—C5—H5119.4C18—C19—H19119.6
C5—C6—C1119.0 (3)N6—C20—N5122.9 (3)
C5—C6—H6120.5N6—C20—S1117.1 (2)
C1—C6—H6120.5N5—C20—S1120.0 (2)
C4—C7—H7A109.5C22—C21—S1110.5 (2)
C4—C7—H7B109.5C22—C21—H21124.7
H7A—C7—H7B109.5S1—C21—H21124.7
C4—C7—H7C109.5C21—C22—N6115.6 (3)
H7A—C7—H7C109.5C21—C22—C23127.2 (3)
H7B—C7—H7C109.5N6—C22—C23117.1 (3)
C9—C8—H8A109.5C24—C23—C28118.9 (3)
C9—C8—H8B109.5C24—C23—C22119.9 (3)
H8A—C8—H8B109.5C28—C23—C22121.2 (3)
C9—C8—H8C109.5C25—C24—C23121.2 (3)
H8A—C8—H8C109.5C25—C24—H24119.4
H8B—C8—H8C109.5C23—C24—H24119.4
N1—C9—C10102.8 (3)C24—C25—C26118.9 (3)
N1—C9—C8123.8 (3)C24—C25—H25120.6
C10—C9—C8133.4 (3)C26—C25—H25120.6
N3—C10—C9109.4 (3)C27—C26—C25121.4 (3)
N3—C10—C11120.3 (3)C27—C26—Br1119.2 (2)
C9—C10—C11130.2 (3)C25—C26—Br1119.4 (2)
N4—C11—C10123.3 (3)C26—C27—C28119.2 (3)
N4—C11—C12114.0 (3)C26—C27—H27120.4
C10—C11—C12122.7 (3)C28—C27—H27120.4
C11—C12—C13102.6 (2)C27—C28—C23120.4 (3)
C11—C12—H12A111.3C27—C28—H28119.8
C13—C12—H12A111.3C23—C28—H28119.8
C11—C12—H12B111.3
C9—N1—N2—N30.7 (3)C11—C12—C13—C14132.8 (3)
C1—N1—N2—N3−177.6 (2)N5—C13—C14—C19−169.6 (3)
N1—N2—N3—C10−0.4 (3)C12—C13—C14—C1975.3 (3)
C11—N4—N5—C20156.5 (3)N5—C13—C14—C1513.2 (4)
C11—N4—N5—C139.4 (3)C12—C13—C14—C15−101.9 (3)
C9—N1—C1—C6118.3 (3)C19—C14—C15—C161.3 (4)
N2—N1—C1—C6−63.7 (4)C13—C14—C15—C16178.5 (3)
C9—N1—C1—C2−64.7 (4)C14—C15—C16—C17−0.5 (5)
N2—N1—C1—C2113.3 (3)C15—C16—C17—F1179.1 (3)
C6—C1—C2—C30.7 (5)C15—C16—C17—C18−1.0 (5)
N1—C1—C2—C3−176.2 (3)C16—C17—C18—C191.7 (5)
C1—C2—C3—C40.9 (5)F1—C17—C18—C19−178.5 (3)
C2—C3—C4—C5−2.0 (5)C15—C14—C19—C18−0.7 (4)
C2—C3—C4—C7176.2 (3)C13—C14—C19—C18−178.0 (3)
C3—C4—C5—C61.6 (5)C17—C18—C19—C14−0.8 (4)
C7—C4—C5—C6−176.6 (3)C22—N6—C20—N5−178.7 (3)
C4—C5—C6—C10.0 (5)C22—N6—C20—S1−0.4 (3)
C2—C1—C6—C5−1.2 (5)N4—N5—C20—N6−166.6 (3)
N1—C1—C6—C5175.8 (3)C13—N5—C20—N6−22.6 (4)
N2—N1—C9—C10−0.7 (3)N4—N5—C20—S115.2 (4)
C1—N1—C9—C10177.5 (3)C13—N5—C20—S1159.2 (2)
N2—N1—C9—C8178.3 (3)C21—S1—C20—N6−0.3 (2)
C1—N1—C9—C8−3.5 (5)C21—S1—C20—N5178.0 (2)
N2—N3—C10—C9−0.1 (3)C20—S1—C21—C221.0 (2)
N2—N3—C10—C11178.7 (2)S1—C21—C22—N6−1.5 (3)
N1—C9—C10—N30.5 (3)S1—C21—C22—C23176.9 (2)
C8—C9—C10—N3−178.4 (3)C20—N6—C22—C211.2 (4)
N1—C9—C10—C11−178.2 (3)C20—N6—C22—C23−177.4 (2)
C8—C9—C10—C112.9 (6)C21—C22—C23—C24176.1 (3)
N5—N4—C11—C10176.4 (3)N6—C22—C23—C24−5.6 (4)
N5—N4—C11—C12−1.1 (3)C21—C22—C23—C28−6.0 (5)
N3—C10—C11—N4178.4 (3)N6—C22—C23—C28172.4 (3)
C9—C10—C11—N4−3.1 (5)C28—C23—C24—C250.3 (4)
N3—C10—C11—C12−4.3 (4)C22—C23—C24—C25178.3 (3)
C9—C10—C11—C12174.2 (3)C23—C24—C25—C260.3 (5)
N4—C11—C12—C13−6.8 (3)C24—C25—C26—C27−0.8 (5)
C10—C11—C12—C13175.6 (2)C24—C25—C26—Br1179.5 (2)
C20—N5—C13—C1479.6 (3)C25—C26—C27—C280.8 (4)
N4—N5—C13—C14−135.1 (2)Br1—C26—C27—C28−179.5 (2)
C20—N5—C13—C12−158.3 (3)C26—C27—C28—C23−0.3 (4)
N4—N5—C13—C12−12.9 (3)C24—C23—C28—C27−0.3 (4)
C11—C12—C13—N511.0 (3)C22—C23—C28—C27−178.2 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C23–C28 benzene ring.

D—H···AD—HH···AD···AD—H···A
C13—H13···N2i1.002.583.488 (4)151
C27—H27···F1ii0.952.533.358 (4)146
C8—H8A···Cg1iii0.982.843.401 (3)117

Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) −x+1, y−1/2, −z−1/2; (iii) −x, y+3/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2440).

References

  • Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem. 44, 2632–2635. [PubMed]
  • Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012a). Eur. J. Med. Chem. 52, 263–268. [PubMed]
  • Abdel-Wahab, B. F., Abdel-Latif, E., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o1954–o1955. [PMC free article] [PubMed]
  • Agilent (2011). CrysAlis PROAgilent Technologies, Yarnton, England.
  • Brandenburg, K. (2006). DIAMONDCrystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography