PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 June 1; 68(Pt 6): o1954–o1955.
Published online 2012 May 31. doi:  10.1107/S1600536812024245
PMCID: PMC3379505

5-(4-Fluoro­phen­yl)-3-[5-methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazol-4-yl]-4,5-dihydro-1H-pyrazole-1-carbothio­amide

Abstract

In the title compound, C20H19FN6S, the pyrazole ring has an envelope conformation, with the methine C atom being the flap atom. The dihedral angle between the least-squares plane through the pyrazole and triazole rings is 7.59 (9)°, and the triazole and attached benzene ring form a dihedral angle of 74.79 (9)°. The thio­urea group is coplanar with the pyrazole ring [N—N—C—S torsion angle = −179.93 (11)°], which enables the formation of an intra­molecular N—H(...)N hydrogen bond. In the crystal, inversion-related mol­ecules associate via N—H(...)S hydrogen bonds and eight-membered {(...)HNCS}2 synthons feature in the crystal packing. These synthons are connected into supra­molecular chains along the a axis via N—H(...)F hydrogen bonds, and the chains are consolidated into layers in the ab plane via C—H(...)S and C—H(...)F contacts.

Related literature  

For the biological activity of pyrazolyl-1,2,3-triazoles, see: Abdel-Wahab et al. (2012a [triangle]); Booth & Ross (1982 [triangle]); Curran (1982 [triangle]). For a related pyrazolyl-1,2,3-triazole structure, see: Abdel-Wahab et al. (2012b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-o1954-scheme1.jpg

Experimental  

Crystal data  

  • C20H19FN6S
  • M r = 394.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-o1954-efi1.jpg
  • a = 9.4388 (4) Å
  • b = 6.5476 (3) Å
  • c = 32.1483 (18) Å
  • β = 91.288 (4)°
  • V = 1986.31 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 100 K
  • 0.40 × 0.30 × 0.20 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector
  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011 [triangle]) T min = 0.855, T max = 1.000
  • 7765 measured reflections
  • 4551 independent reflections
  • 3809 reflections with I > 2σ(I)
  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.109
  • S = 1.02
  • 4551 reflections
  • 263 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812024245/su2439sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812024245/su2439Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812024245/su2439Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

In continuation of structural studies of related drug candidates (Abdel-Wahab et al., 2012b), the title compound, (I), was investigated crystallographically. This compound is of interest owing to the established biological activities exhibited by pyrazolyl-1,2,3-triazoles (Abdel-Wahab et al., 2012a; Booth & Ross, 1982; Curran, 1982).

The pyrazole ring in (I), Fig. 1, adopts an envelope conformation (r.m.s. deviation = 0.138 Å) with the methine-C2 atom being the flap atom. The dihedral angle between the least-squares plane through this ring and the adjacent triazole ring is 7.59 (9)°. The benzene ring connected to the triazole ring is twisted out of its plane, forming a dihedral angle of 74.79 (9)°. The N3—N2—C1—S1 torsion angle of -179.93 (11)° indicates that the thiourea moiety is coplanar with the pyrazole ring. This arrangement coupled with the orientation of the amino group towards the ring enables the formation of an intramolecular N—H···N hydrogen bond (Table 1).

In the crystal, centrosymmetrically related molecules associate via N—H···S hydrogen bonds and eight-membered {···HNCS}2 synthons feature in the crystal packing (Table 1). These are connected into supramolecular chains along the a axis via N—H···F hydrogen bonds (Fig. 2 and Table 1). Chains are connected into layers in the ab plane via C—H···S and C—H···F contacts (Table 1). Layers inter-digitate along the c axis with no specific interactions between them (Fig. 3).

Experimental

The title compound was prepared according to the reported method (Abdel-Wahab et al., 2012a). Crystals were obtained from its DMF solution by slow evaporation at room temperature.

Refinement

C-bound H atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms] and were included in the refinement in the riding model approximation. The N-bound H atoms were freely refined.

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
Fig. 2.
A view of a supramolecular chain along the a axis in (I). The N—H···S and N—H···F hydrogen bonds are shown as blue and orange dashed lines, respectively.
Fig. 3.
A view in projection down the b axis of the unit-cell contents for (I) highlighting the inter-digitation of layers along the c axis. The N—H···S, N—H···F, C—H···S ...

Crystal data

C20H19FN6SF(000) = 824
Mr = 394.47Dx = 1.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3598 reflections
a = 9.4388 (4) Åθ = 2.2–27.5°
b = 6.5476 (3) ŵ = 0.19 mm1
c = 32.1483 (18) ÅT = 100 K
β = 91.288 (4)°Prism, light-brown
V = 1986.31 (17) Å30.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector4551 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3809 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.5°
ω scansh = −11→12
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)k = −8→8
Tmin = 0.855, Tmax = 1.000l = −23→41
7765 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.045P)2 + 1.138P] where P = (Fo2 + 2Fc2)/3
4551 reflections(Δ/σ)max = 0.002
263 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.32997 (4)1.28074 (6)0.507140 (13)0.01661 (12)
F1−0.23235 (10)1.32770 (17)0.39047 (3)0.0253 (3)
N10.53882 (15)1.2902 (2)0.45302 (5)0.0181 (3)
N20.38250 (13)1.0266 (2)0.44567 (4)0.0137 (3)
N30.45951 (13)0.9562 (2)0.41184 (4)0.0145 (3)
N40.40790 (15)0.4715 (2)0.35943 (5)0.0212 (3)
N50.47668 (16)0.3904 (2)0.32855 (5)0.0224 (3)
N60.57249 (14)0.5319 (2)0.31626 (4)0.0161 (3)
C10.42324 (16)1.1970 (2)0.46636 (5)0.0139 (3)
C20.25153 (16)0.9101 (2)0.45166 (5)0.0139 (3)
H20.23930.87890.48180.017*
C30.28474 (17)0.7137 (3)0.42742 (5)0.0162 (3)
H3A0.31460.60170.44630.019*
H3B0.20230.66840.41020.019*
C40.40479 (16)0.7836 (3)0.40082 (5)0.0145 (3)
C50.12296 (16)1.0241 (2)0.43419 (5)0.0136 (3)
C60.13589 (17)1.1894 (3)0.40729 (5)0.0170 (3)
H60.22721.23300.39920.020*
C70.01603 (17)1.2911 (3)0.39217 (5)0.0183 (4)
H70.02411.40390.37380.022*
C8−0.11438 (17)1.2240 (3)0.40457 (5)0.0177 (4)
C9−0.13193 (17)1.0592 (3)0.43024 (5)0.0200 (4)
H9−0.22381.01480.43760.024*
C10−0.01149 (17)0.9592 (3)0.44518 (5)0.0176 (3)
H10−0.02100.84500.46310.021*
C110.45981 (17)0.6634 (3)0.36697 (5)0.0157 (3)
C120.56581 (17)0.7042 (3)0.33933 (5)0.0158 (3)
C130.65699 (19)0.8859 (3)0.33351 (6)0.0245 (4)
H13A0.69110.88800.30490.037*
H13B0.73800.87990.35310.037*
H13C0.60211.01000.33870.037*
C140.66475 (17)0.4832 (3)0.28258 (5)0.0167 (3)
C150.77454 (18)0.3469 (3)0.28951 (5)0.0204 (4)
H150.79170.29130.31650.025*
C160.85941 (19)0.2924 (3)0.25663 (6)0.0229 (4)
H160.93540.19950.26130.027*
C170.83530 (18)0.3714 (3)0.21690 (5)0.0207 (4)
C180.72555 (19)0.5103 (3)0.21112 (6)0.0260 (4)
H180.70920.56850.18440.031*
C190.63922 (19)0.5658 (3)0.24361 (5)0.0234 (4)
H190.56350.65940.23910.028*
C200.9250 (2)0.3050 (3)0.18119 (6)0.0324 (5)
H20A1.01080.23750.19200.049*
H20B0.95140.42470.16480.049*
H20C0.87100.20960.16350.049*
H1N0.5662 (19)1.407 (3)0.4648 (6)0.020 (5)*
H2N0.574 (2)1.255 (3)0.4297 (7)0.027 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0194 (2)0.0157 (2)0.0149 (2)−0.00300 (17)0.00448 (15)−0.00283 (16)
F10.0177 (5)0.0359 (6)0.0223 (5)0.0063 (5)−0.0003 (4)0.0081 (5)
N10.0174 (7)0.0180 (8)0.0191 (8)−0.0041 (6)0.0050 (6)−0.0068 (6)
N20.0125 (6)0.0151 (7)0.0137 (7)−0.0008 (5)0.0024 (5)−0.0030 (6)
N30.0149 (6)0.0154 (7)0.0132 (7)0.0016 (6)0.0022 (5)−0.0015 (6)
N40.0287 (8)0.0162 (7)0.0190 (7)−0.0038 (6)0.0068 (6)−0.0044 (6)
N50.0291 (8)0.0177 (7)0.0208 (8)−0.0071 (6)0.0080 (6)−0.0044 (6)
N60.0203 (7)0.0133 (7)0.0147 (7)−0.0028 (6)0.0027 (5)−0.0007 (6)
C10.0145 (7)0.0131 (8)0.0141 (8)0.0020 (6)−0.0026 (6)0.0011 (6)
C20.0159 (8)0.0118 (7)0.0142 (8)−0.0031 (6)0.0014 (6)0.0004 (6)
C30.0180 (8)0.0137 (8)0.0170 (8)−0.0008 (7)0.0025 (6)−0.0006 (7)
C40.0155 (7)0.0143 (8)0.0138 (8)0.0019 (6)0.0001 (6)0.0013 (6)
C50.0153 (7)0.0136 (8)0.0121 (7)−0.0015 (6)0.0011 (6)−0.0023 (6)
C60.0150 (8)0.0186 (8)0.0174 (8)−0.0042 (7)0.0019 (6)−0.0003 (7)
C70.0204 (8)0.0179 (8)0.0166 (8)−0.0010 (7)0.0004 (6)0.0041 (7)
C80.0148 (8)0.0230 (9)0.0152 (8)0.0036 (7)−0.0012 (6)0.0003 (7)
C90.0142 (8)0.0270 (10)0.0189 (8)−0.0034 (7)0.0033 (6)0.0027 (7)
C100.0182 (8)0.0187 (8)0.0161 (8)−0.0029 (7)0.0017 (6)0.0021 (7)
C110.0180 (8)0.0132 (8)0.0157 (8)−0.0006 (6)0.0001 (6)−0.0010 (6)
C120.0188 (8)0.0137 (8)0.0150 (8)0.0003 (7)0.0000 (6)−0.0032 (7)
C130.0273 (9)0.0177 (9)0.0290 (10)−0.0070 (8)0.0093 (8)−0.0067 (8)
C140.0204 (8)0.0151 (8)0.0148 (8)−0.0022 (7)0.0033 (6)−0.0033 (7)
C150.0252 (9)0.0213 (9)0.0148 (8)0.0012 (7)0.0008 (7)0.0016 (7)
C160.0236 (9)0.0239 (9)0.0214 (9)0.0059 (8)0.0021 (7)0.0015 (8)
C170.0239 (9)0.0207 (9)0.0177 (8)0.0020 (7)0.0039 (7)−0.0039 (7)
C180.0330 (10)0.0292 (10)0.0158 (9)0.0075 (8)0.0030 (7)0.0024 (8)
C190.0272 (9)0.0240 (9)0.0192 (9)0.0104 (8)0.0020 (7)0.0019 (8)
C200.0372 (11)0.0379 (12)0.0223 (10)0.0130 (9)0.0089 (8)0.0000 (9)

Geometric parameters (Å, º)

S1—C11.6873 (17)C7—C81.374 (2)
F1—C81.3724 (19)C7—H70.9500
N1—C11.329 (2)C8—C91.371 (2)
N1—H1N0.89 (2)C9—C101.389 (2)
N1—H2N0.86 (2)C9—H90.9500
N2—C11.350 (2)C10—H100.9500
N2—N31.3996 (18)C11—C121.379 (2)
N2—C21.469 (2)C12—C131.483 (2)
N3—C41.289 (2)C13—H13A0.9800
N4—N51.311 (2)C13—H13B0.9800
N4—C111.368 (2)C13—H13C0.9800
N5—N61.360 (2)C14—C191.381 (2)
N6—C121.352 (2)C14—C151.382 (2)
N6—C141.441 (2)C15—C161.387 (2)
C2—C51.521 (2)C15—H150.9500
C2—C31.539 (2)C16—C171.392 (2)
C2—H21.0000C16—H160.9500
C3—C41.506 (2)C17—C181.388 (3)
C3—H3A0.9900C17—C201.505 (2)
C3—H3B0.9900C18—C191.387 (2)
C4—C111.449 (2)C18—H180.9500
C5—C101.391 (2)C19—H190.9500
C5—C61.392 (2)C20—H20A0.9800
C6—C71.391 (2)C20—H20B0.9800
C6—H60.9500C20—H20C0.9800
C1—N1—H1N119.3 (12)C8—C9—C10118.08 (15)
C1—N1—H2N119.6 (14)C8—C9—H9121.0
H1N—N1—H2N119.4 (19)C10—C9—H9121.0
C1—N2—N3120.50 (13)C9—C10—C5120.82 (16)
C1—N2—C2126.55 (13)C9—C10—H10119.6
N3—N2—C2112.60 (12)C5—C10—H10119.6
C4—N3—N2106.88 (13)N4—C11—C12109.01 (14)
N5—N4—C11108.96 (14)N4—C11—C4119.94 (15)
N4—N5—N6106.73 (13)C12—C11—C4131.01 (16)
C12—N6—N5111.69 (13)N6—C12—C11103.62 (14)
C12—N6—C14129.31 (14)N6—C12—C13124.45 (15)
N5—N6—C14119.00 (13)C11—C12—C13131.93 (16)
N1—C1—N2116.57 (15)C12—C13—H13A109.5
N1—C1—S1123.20 (13)C12—C13—H13B109.5
N2—C1—S1120.23 (12)H13A—C13—H13B109.5
N2—C2—C5111.32 (13)C12—C13—H13C109.5
N2—C2—C3100.70 (12)H13A—C13—H13C109.5
C5—C2—C3113.13 (13)H13B—C13—H13C109.5
N2—C2—H2110.4C19—C14—C15120.95 (16)
C5—C2—H2110.4C19—C14—N6119.95 (15)
C3—C2—H2110.4C15—C14—N6119.05 (15)
C4—C3—C2101.42 (13)C14—C15—C16119.14 (16)
C4—C3—H3A111.5C14—C15—H15120.4
C2—C3—H3A111.5C16—C15—H15120.4
C4—C3—H3B111.5C15—C16—C17121.23 (17)
C2—C3—H3B111.5C15—C16—H16119.4
H3A—C3—H3B109.3C17—C16—H16119.4
N3—C4—C11122.33 (15)C18—C17—C16118.19 (16)
N3—C4—C3114.34 (14)C18—C17—C20121.20 (17)
C11—C4—C3123.26 (15)C16—C17—C20120.61 (16)
C10—C5—C6119.23 (15)C19—C18—C17121.34 (17)
C10—C5—C2118.75 (15)C19—C18—H18119.3
C6—C5—C2122.02 (14)C17—C18—H18119.3
C7—C6—C5120.48 (15)C14—C19—C18119.14 (17)
C7—C6—H6119.8C14—C19—H19120.4
C5—C6—H6119.8C18—C19—H19120.4
C8—C7—C6118.18 (16)C17—C20—H20A109.5
C8—C7—H7120.9C17—C20—H20B109.5
C6—C7—H7120.9H20A—C20—H20B109.5
C9—C8—F1118.69 (14)C17—C20—H20C109.5
C9—C8—C7123.19 (16)H20A—C20—H20C109.5
F1—C8—C7118.12 (15)H20B—C20—H20C109.5
C1—N2—N3—C4174.29 (14)C6—C5—C10—C9−1.1 (3)
C2—N2—N3—C4−12.04 (17)C2—C5—C10—C9179.58 (15)
C11—N4—N5—N6−0.27 (19)N5—N4—C11—C120.2 (2)
N4—N5—N6—C120.23 (19)N5—N4—C11—C4−177.76 (15)
N4—N5—N6—C14179.55 (14)N3—C4—C11—N4172.91 (15)
N3—N2—C1—N1−0.5 (2)C3—C4—C11—N4−3.8 (2)
C2—N2—C1—N1−173.19 (15)N3—C4—C11—C12−4.6 (3)
N3—N2—C1—S1−179.93 (11)C3—C4—C11—C12178.72 (17)
C2—N2—C1—S17.3 (2)N5—N6—C12—C11−0.08 (18)
C1—N2—C2—C572.6 (2)C14—N6—C12—C11−179.32 (16)
N3—N2—C2—C5−100.65 (15)N5—N6—C12—C13179.88 (16)
C1—N2—C2—C3−167.24 (15)C14—N6—C12—C130.6 (3)
N3—N2—C2—C319.54 (16)N4—C11—C12—N6−0.08 (18)
N2—C2—C3—C4−18.17 (15)C4—C11—C12—N6177.61 (17)
C5—C2—C3—C4100.72 (15)N4—C11—C12—C13179.96 (18)
N2—N3—C4—C11−178.76 (14)C4—C11—C12—C13−2.4 (3)
N2—N3—C4—C3−1.78 (18)C12—N6—C14—C19−76.7 (2)
C2—C3—C4—N313.53 (18)N5—N6—C14—C19104.1 (2)
C2—C3—C4—C11−169.51 (15)C12—N6—C14—C15106.0 (2)
N2—C2—C5—C10−165.88 (14)N5—N6—C14—C15−73.2 (2)
C3—C2—C5—C1081.57 (18)C19—C14—C15—C16−0.3 (3)
N2—C2—C5—C614.8 (2)N6—C14—C15—C16176.99 (16)
C3—C2—C5—C6−97.72 (18)C14—C15—C16—C17−0.4 (3)
C10—C5—C6—C71.2 (2)C15—C16—C17—C181.4 (3)
C2—C5—C6—C7−179.49 (15)C15—C16—C17—C20−177.77 (18)
C5—C6—C7—C80.1 (3)C16—C17—C18—C19−1.7 (3)
C6—C7—C8—C9−1.6 (3)C20—C17—C18—C19177.47 (19)
C6—C7—C8—F1178.40 (15)C15—C14—C19—C180.0 (3)
F1—C8—C9—C10−178.27 (15)N6—C14—C19—C18−177.25 (16)
C7—C8—C9—C101.7 (3)C17—C18—C19—C141.0 (3)
C8—C9—C10—C5−0.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.89 (2)2.432 (19)3.3159 (14)172.7 (16)
N1—H2N···F1ii0.86 (2)2.29 (2)2.9940 (18)138.9 (17)
N1—H2N···N30.86 (2)2.30 (2)2.6554 (19)104.9 (15)
C3—H3A···S1iii0.992.873.8390 (19)166
C9—H9···S1iv0.952.833.5595 (18)135
C15—H15···F1v0.952.413.2502 (19)148

Symmetry codes: (i) −x+1, −y+3, −z+1; (ii) x+1, y, z; (iii) x, y−1, z; (iv) −x, −y+2, −z+1; (v) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2439).

References

  • Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012a). Eur. J. Med. Chem. 52, 263–268. [PubMed]
  • Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o1956–o1957. [PMC free article] [PubMed]
  • Agilent (2011). CrysAlis PROAgilent Technologies, Yarnton, Oxfordshire, England.
  • Booth, J. H. & Ross, A. S. (1982). US Patent 4336375.
  • Brandenburg, K. (2006). DIAMONDCrystal Impact GbR, Bonn, Germany.
  • Curran, W. V. (1982). US Patent 4334062.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography