PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Jun 1, 2012; 68(Pt 6): o1845.
Published online May 23, 2012. doi:  10.1107/S1600536812022246
PMCID: PMC3379414
1,3-Bis(2,6-diisopropyl­phen­yl)-1H-imidazol-3-ium bromide dichloro­methane disolvate
Matthias Berger,a Norbert Auner,a Tanja Sinke,a and Michael Boltea*
aInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
Correspondence e-mail: bolte/at/chemie.uni-frankfurt.de
Received May 10, 2012; Accepted May 16, 2012.
Abstract
In the title compound, C27H37N2 +·Br·2CH2Cl2, both the cation and the anion are located on a crystallographic mirror plane. Both of the dichloro­methane solvent mol­ecules show a disorder across a mirror plane over two equally occupied positions. In the crystal, the cations are connnected to the bromide ions via C—H(...)Br hydrogen bonds.
Related literature  
For the preparation of imidazolium salts, see: Arduengo et al. (1995 [triangle], 1999 [triangle]); Hinter­mann (2007 [triangle]). For structures with the same cation but different anions, see: Stasch et al. (2004 [triangle]); Blue et al. (2006 [triangle]); Berger et al. (2012 [triangle]). For compounds with the 1,3-bis-(2,6-diisopropyl­phen­yl)imidazolium unit, see: Ikhile et al. (2010 [triangle]); Giffin et al. (2010 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-68-o1845-scheme1.jpg Object name is e-68-o1845-scheme1.jpg
Crystal data  
  • C27H37N2 +·Br·2CH2Cl2
  • M r = 639.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-o1845-efi2.jpg
  • a = 9.1874 (8) Å
  • b = 16.5165 (12) Å
  • c = 11.030 (1) Å
  • β = 102.332 (7)°
  • V = 1635.1 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.60 mm−1
  • T = 173 K
  • 0.52 × 0.28 × 0.24 mm
Data collection  
  • Stoe IPDS II two-circle diffractometer
  • Absorption correction: multi-scan (MULABS; Spek, 2009 [triangle]; Blessing, 1995 [triangle]) T min = 0.489, T max = 0.700
  • 20988 measured reflections
  • 3200 independent reflections
  • 2867 reflections with I > 2σ(I)
  • R int = 0.084
Refinement  
  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.090
  • S = 1.03
  • 3200 reflections
  • 197 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.36 e Å−3
Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 .
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022246/ng5272sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022246/ng5272Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812022246/ng5272Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Comment
Imidazolium salts are precursors for the synthesis of N-heterocyclic carbenes (NHC) and can be prepared according to Arduengo et al. (1995, 1999) and Hintermann (2007). Deprotonation by strong bases gives the free stable NHC, which is widely used as ligands.
The title compound crystallizes with discrete cations, anions and solvent dichloromethane molecules. Both cations and anions are located on a crystallographic mirror plane. Both dichloromethane molecules show a disorder across a mirror plane over two equally occupied positions. The Br anions are connnected to the cations via C—H···Br hydrogen bonds. Structures with the same cation, but with different anions and solvent molecules, have been determined by Stasch et al. (2004), Blue et al. (2006) and Berger et al. (2012). For compounds with 1,3-bis-(2,6-diisopropylphenyl)imidazolium unit, see: Ikhile et al. (2010) and Giffin et al. (2010).
Experimental
1,3-Bis(2,6-di-isopropylphenyl)1H-imidazol-3-ium bromide chloroform disolvate was prepared by reacting 167 mg of 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene with 115 mg of Si2Br6 in deuterated dichloromethane. After two weeks at 253 K colorless needles of the title compound crystallized in the NMR-Tube.
Refinement
H atoms were refined using a riding model, with C—H ranging from 0.95 Å to 1.00 Å and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).
Figures
Fig. 1.
Fig. 1.
A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding and dichloromethane molecules (more ...)
Crystal data
C27H37N2+·Br·2CH2Cl2F(000) = 664
Mr = 639.35Dx = 1.299 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 19135 reflections
a = 9.1874 (8) Åθ = 3.4–26.0°
b = 16.5165 (12) ŵ = 1.60 mm1
c = 11.030 (1) ÅT = 173 K
β = 102.332 (7)°Plate, colourless
V = 1635.1 (2) Å30.52 × 0.28 × 0.24 mm
Z = 2
Data collection
Stoe IPDS II two-circle diffractometer3200 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source2867 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.084
ω scansθmax = 25.7°, θmin = 3.4°
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995)h = −11→11
Tmin = 0.489, Tmax = 0.700k = −19→20
20988 measured reflectionsl = −13→13
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.041P)2 + 0.9357P] where P = (Fo2 + 2Fc2)/3
3200 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.36 e Å3
Special details
Experimental. ;
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/UeqOcc. (<1)
N10.29660 (18)0.18481 (10)0.41051 (15)0.0255 (4)
C10.2134 (3)0.25000.4158 (3)0.0241 (6)
H10.11190.25000.42220.029*
C20.4378 (2)0.20927 (14)0.4033 (2)0.0313 (5)
H20.51970.17510.39920.038*
C30.1307 (3)0.11525 (15)0.1796 (2)0.0440 (6)
H30.18460.16820.19250.053*
C4−0.0359 (4)0.1327 (2)0.1415 (3)0.0594 (8)
H4A−0.05670.16260.06290.089*
H4B−0.06690.16520.20590.089*
H4C−0.09110.08150.13110.089*
C50.1838 (3)0.0696 (2)0.0773 (3)0.0545 (7)
H5A0.16070.10120.00040.082*
H5B0.13330.01710.06400.082*
H5C0.29170.06110.10170.082*
C60.3631 (3)0.09778 (16)0.6435 (2)0.0394 (5)
H60.41380.14700.61970.047*
C70.2619 (4)0.1250 (3)0.7253 (4)0.0934 (15)
H7A0.18680.16210.67910.140*
H7B0.32030.15290.79800.140*
H7C0.21230.07790.75230.140*
C80.4824 (5)0.0423 (3)0.7119 (4)0.1023 (17)
H8A0.54720.02560.65650.153*
H8B0.4361−0.00570.74010.153*
H8C0.54150.07070.78380.153*
C110.2443 (2)0.10184 (13)0.4124 (2)0.0317 (5)
C120.1641 (3)0.06934 (14)0.3013 (2)0.0382 (5)
C130.1118 (4)−0.00958 (16)0.3072 (3)0.0531 (7)
H130.0559−0.03430.23420.064*
C140.1396 (4)−0.05222 (16)0.4166 (3)0.0578 (8)
H140.1019−0.10570.41830.069*
C150.2209 (3)−0.01857 (16)0.5234 (3)0.0500 (7)
H150.2401−0.04940.59780.060*
C160.2761 (3)0.06008 (14)0.5248 (2)0.0366 (5)
Br1−0.17082 (3)0.25000.41902 (3)0.03239 (11)
C90.6207 (8)0.2781 (5)0.1008 (6)0.083 (4)0.50
H9A0.66870.27350.18990.100*0.309 (13)
H9B0.69870.26570.05400.100*0.309 (13)
H9C0.68250.25610.04520.100*0.191 (13)
H9D0.66660.26610.18860.100*0.191 (13)
Cl10.5757 (3)0.3808 (3)0.0739 (3)0.1306 (12)0.50
Cl20.4398 (9)0.25000.0600 (7)0.091 (3)0.38 (3)
Cl2'0.4863 (16)0.1966 (13)0.0681 (6)0.129 (7)0.309 (13)
C100.7893 (8)0.2231 (4)0.7366 (6)0.0643 (18)0.50
H10A0.77760.23630.64750.077*0.50
H10B0.77600.16390.74380.077*0.50
Cl30.96814 (15)0.25000.81560 (13)0.0802 (4)
Cl40.6535 (2)0.27308 (11)0.79502 (16)0.0803 (7)0.50
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
N10.0245 (9)0.0254 (8)0.0255 (8)0.0012 (7)0.0030 (7)−0.0009 (7)
C10.0239 (14)0.0225 (14)0.0246 (14)0.0000.0022 (11)0.000
C20.0247 (10)0.0374 (11)0.0322 (11)0.0053 (9)0.0074 (8)−0.0019 (9)
C30.0606 (16)0.0333 (12)0.0331 (12)−0.0058 (12)−0.0012 (11)−0.0042 (10)
C40.074 (2)0.0622 (19)0.0383 (14)0.0213 (16)0.0033 (13)−0.0042 (13)
C50.0549 (17)0.0630 (18)0.0446 (15)0.0006 (15)0.0085 (13)−0.0039 (14)
C60.0428 (13)0.0418 (13)0.0325 (12)0.0040 (11)0.0055 (10)0.0051 (10)
C70.057 (2)0.142 (4)0.081 (3)0.000 (2)0.0153 (19)−0.065 (3)
C80.100 (3)0.100 (3)0.080 (3)0.056 (3)−0.042 (2)−0.025 (2)
C110.0341 (12)0.0226 (10)0.0381 (12)0.0013 (9)0.0073 (9)−0.0009 (9)
C120.0456 (14)0.0276 (11)0.0384 (12)−0.0020 (10)0.0025 (10)−0.0018 (10)
C130.071 (2)0.0321 (13)0.0501 (16)−0.0120 (13)0.0003 (14)−0.0050 (12)
C140.081 (2)0.0268 (13)0.0620 (18)−0.0124 (13)0.0074 (16)0.0036 (12)
C150.0673 (19)0.0345 (13)0.0484 (15)−0.0004 (13)0.0128 (14)0.0118 (11)
C160.0396 (13)0.0321 (12)0.0381 (12)0.0050 (10)0.0082 (10)0.0048 (10)
Br10.02843 (17)0.03733 (18)0.03321 (18)0.0000.01058 (12)0.000
C90.056 (3)0.148 (12)0.041 (3)−0.028 (4)−0.003 (2)−0.009 (4)
Cl10.0784 (17)0.170 (3)0.129 (2)0.0489 (19)−0.0110 (16)−0.020 (2)
Cl20.068 (3)0.144 (9)0.063 (3)0.0000.019 (2)0.000
Cl2'0.094 (7)0.234 (17)0.063 (2)−0.100 (10)0.024 (3)−0.035 (5)
C100.084 (4)0.064 (4)0.056 (3)−0.011 (3)0.039 (3)−0.015 (3)
Cl30.0666 (8)0.1076 (11)0.0723 (8)0.0000.0278 (6)0.000
Cl40.0721 (10)0.099 (2)0.0690 (9)0.0362 (10)0.0134 (8)−0.0046 (9)
Geometric parameters (Å, º)
N1—C11.329 (2)C11—C121.395 (3)
N1—C21.377 (3)C12—C131.396 (4)
N1—C111.454 (3)C13—C141.373 (4)
C1—N1i1.329 (2)C13—H130.9500
C1—H10.9500C14—C151.371 (4)
C2—C2i1.346 (5)C14—H140.9500
C2—H20.9500C15—C161.393 (4)
C3—C121.515 (3)C15—H150.9500
C3—C51.521 (4)C9—Cl21.691 (10)
C3—C41.525 (4)C9—Cl11.757 (10)
C3—H31.0000C9—Cl2'1.810 (11)
C4—H4A0.9800C9—H9A0.9900
C4—H4B0.9800C9—H9B0.9900
C4—H4C0.9800C9—H9C0.9900
C5—H5A0.9800C9—H9D0.9900
C5—H5B0.9800Cl1—Cl2'i1.51 (3)
C5—H5C0.9800Cl2—C9i1.691 (10)
C6—C71.496 (4)Cl2'—C9i1.280 (11)
C6—C81.503 (4)Cl2'—Cl1i1.51 (3)
C6—C161.514 (3)Cl2'—Cl2'i1.76 (4)
C6—H61.0000C10—Cl41.731 (6)
C7—H7A0.9800C10—Cl31.745 (7)
C7—H7B0.9800C10—H10A0.9900
C7—H7C0.9800C10—H10B0.9900
C8—H8A0.9800Cl3—C10i1.745 (7)
C8—H8B0.9800Cl4—Cl4i0.763 (4)
C8—H8C0.9800Cl4—C10i1.523 (6)
C11—C161.394 (3)
C1—N1—C2108.82 (18)H8A—C8—H8C109.5
C1—N1—C11124.62 (18)H8B—C8—H8C109.5
C2—N1—C11126.56 (18)C16—C11—C12124.2 (2)
N1i—C1—N1108.2 (3)C16—C11—N1118.2 (2)
N1i—C1—H1125.9C12—C11—N1117.7 (2)
N1—C1—H1125.9C11—C12—C13116.2 (2)
C2i—C2—N1107.06 (12)C11—C12—C3123.7 (2)
C2i—C2—H2126.5C13—C12—C3120.1 (2)
N1—C2—H2126.5C14—C13—C12121.2 (3)
C12—C3—C5111.9 (2)C14—C13—H13119.4
C12—C3—C4109.9 (2)C12—C13—H13119.4
C5—C3—C4110.6 (2)C15—C14—C13120.8 (2)
C12—C3—H3108.1C15—C14—H14119.6
C5—C3—H3108.1C13—C14—H14119.6
C4—C3—H3108.1C14—C15—C16121.2 (2)
C3—C4—H4A109.5C14—C15—H15119.4
C3—C4—H4B109.5C16—C15—H15119.4
H4A—C4—H4B109.5C15—C16—C11116.4 (2)
C3—C4—H4C109.5C15—C16—C6121.1 (2)
H4A—C4—H4C109.5C11—C16—C6122.5 (2)
H4B—C4—H4C109.5Cl2—C9—Cl192.2 (4)
C3—C5—H5A109.5Cl2—C9—H9A116.6
C3—C5—H5B109.5Cl1—C9—H9A106.3
H5A—C5—H5B109.5Cl2'—C9—H9A106.3
C3—C5—H5C109.5Cl2—C9—H9B125.7
H5A—C5—H5C109.5Cl1—C9—H9B106.3
H5B—C5—H5C109.5Cl2'—C9—H9B106.3
C7—C6—C8111.2 (3)H9A—C9—H9B106.4
C7—C6—C16111.3 (2)Cl2—C9—H9C113.3
C8—C6—C16112.1 (2)Cl1—C9—H9C113.3
C7—C6—H6107.3Cl2—C9—H9D113.3
C8—C6—H6107.3Cl1—C9—H9D113.3
C16—C6—H6107.3Cl2'—C9—H9D100.2
C6—C7—H7A109.5H9C—C9—H9D110.6
C6—C7—H7B109.5Cl2'i—Cl1—C945.3 (3)
H7A—C7—H7B109.5Cl1i—Cl2'—C9106.2 (9)
C6—C7—H7C109.5Cl4—C10—Cl3111.7 (3)
H7A—C7—H7C109.5Cl4—C10—H10A109.3
H7B—C7—H7C109.5Cl3—C10—H10A109.3
C6—C8—H8A109.5Cl4—C10—H10B109.3
C6—C8—H8B109.5Cl3—C10—H10B109.3
H8A—C8—H8B109.5H10A—C10—H10B107.9
C6—C8—H8C109.5
C2—N1—C1—N1i0.8 (3)C12—C11—C16—C15−0.9 (4)
C11—N1—C1—N1i−179.28 (14)N1—C11—C16—C15178.5 (2)
C1—N1—C2—C2i−0.50 (18)C12—C11—C16—C6−179.8 (2)
C11—N1—C2—C2i179.60 (16)N1—C11—C16—C6−0.4 (3)
C1—N1—C11—C16−98.5 (3)C7—C6—C16—C15−77.5 (4)
C2—N1—C11—C1681.4 (3)C8—C6—C16—C1547.7 (4)
C1—N1—C11—C1281.0 (3)C7—C6—C16—C11101.3 (3)
C2—N1—C11—C12−99.1 (3)C8—C6—C16—C11−133.5 (3)
C16—C11—C12—C131.2 (4)Cl2—C9—Cl1—Cl2'i2.7 (5)
N1—C11—C12—C13−178.1 (2)Cl2'—C9—Cl1—Cl2'i7.6 (4)
C16—C11—C12—C3−179.8 (2)Cl1—C9—Cl2—C9i174.0 (2)
N1—C11—C12—C30.8 (4)Cl2'—C9—Cl2—C9i1.6 (6)
C5—C3—C12—C11124.9 (3)Cl2—C9—Cl2'—C9i−177.7 (8)
C4—C3—C12—C11−111.8 (3)Cl1—C9—Cl2'—C9i173.1 (2)
C5—C3—C12—C13−56.2 (4)Cl2—C9—Cl2'—Cl1i175.3 (9)
C4—C3—C12—C1367.1 (3)Cl1—C9—Cl2'—Cl1i166.1 (5)
C11—C12—C13—C14−0.5 (4)Cl2—C9—Cl2'—Cl2'i2.3 (8)
C3—C12—C13—C14−179.5 (3)Cl1—C9—Cl2'—Cl2'i−6.9 (2)
C12—C13—C14—C15−0.6 (5)Cl4—C10—Cl3—C10i−50.6 (3)
C13—C14—C15—C160.9 (5)Cl3—C10—Cl4—Cl4i−121.8 (4)
C14—C15—C16—C11−0.2 (4)Cl3—C10—Cl4—C10i58.2 (4)
C14—C15—C16—C6178.7 (3)
Symmetry code: (i) x, −y+1/2, z.
Hydrogen-bond geometry (Å, º)
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.952.593.538 (3)175
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5272).
  • Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027–11028.
  • Arduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523–14534.
  • Berger, M., Auner, N. & Bolte, M. (2012). Acta Cryst. E68, o1844. [PMC free article] [PubMed]
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Blue, E. D., Gunnoe, T. B., Petersen, J. L. & Boyle, P. D. (2006). J. Organomet. Chem. 691, 5988–5993.
  • Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010). Acta Cryst. E66, o2090–o2091. [PMC free article] [PubMed]
  • Hintermann, L. (2007). Beilstein J. Org. Chem. 3 No. 22. doi:10.1186/1860-5397-3-22.
  • Ikhile, M. I. & Bala, M. D. (2010). Acta Cryst. E66, o3121. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stasch, A., Singh, S., Roesky, H. W., Noltemeyer, M. & Schmidt, H.-G. (2004). Eur. J. Inorg. Chem. pp. 4052–4055.
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography