PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bmcbiophysBioMed CentralBiomed Central Web Sitesearchsubmit a manuscriptregisterthis articleBMC BiophysicsJournal Front Page
 
BMC Biophys. 2012; 5: 1.
Published online 2012 January 19. doi:  10.1186/2046-1682-5-1
PMCID: PMC3368725

Using default constraints of the spindle assembly checkpoint to estimate the associated chemical rates

Abstract

Background

Default activation of the spindle assembly checkpoint provides severe constraints on the underlying biochemical activation rates: on one hand, the cell cannot divide before all chromosomes are aligned, but on the other hand, when they are ready, the separation is quite fast, lasting a few minutes. Our purpose is to use these opposed constraints to estimate the associated chemical rates.

Results

To analyze the above constraints, we develop a markovian model to describe the dynamics of Cdc20 molecules. We compute the probability for no APC/C activation before time t, the distribution of Cdc20 at equilibrium and the mean time to complete APC/C activation after all chromosomes are attached.

Conclusions

By studying Cdc20 inhibition and the activation time, we obtain a range for the main chemical reaction rates regulating the spindle assembly checkpoint and transition to anaphase.


Articles from BMC Biophysics are provided here courtesy of BioMed Central