Search tips
Search criteria 


Logo of narLink to Publisher's site
Nucleic Acids Res. 1988 April 11; 16(7): 2841–2857.
PMCID: PMC336436

A yeast tRNA(Arg) gene can act as promoter for a 5' flank deficient, non-transcribable tRNA(SUP)6 gene to produce biologically active suppressor tRNA.


In S. cerevisiae most tRNA genes are located and expressed as single entities. The tDNA(Arg)-tDNA(Asp) pair, however, is transcribed into a dimeric precursor before being processed into two mature tRNA species. The second gene of this pair, tDNA(Asp), is totally dependent on the first gene, tDNA(Arg), and its promoter components, for homologous in vitro transcription. The second gene in the pair is now replaced by the ochre suppressor tDNA(SUP)6-o, which, by itself, cannot be transcribed because of a nonfunctional 5' flanking region. The tDNA(Arg)-tDNA(SUP)6-o was transcribed into a dimeric precursor which was processed to mature tRNA molecules as judged in vitro by electrophoretic separation, and in vivo by their ability to suppress ochre but not amber yeast mutations. Mutations in the internal promoter of the first gene decreased transcription, both in vitro and in vivo, of the second-tRNA(SUP)6-o-gene. Thus tDNA(Arg) with its 5' flanking region can act as an external promoter for other RNA polymerase III-read genes that are by themselves inactive due to impaired promoter/modulator regions.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.6M), or click on a page image below to browse page by page.

Images in this article

Click on the image to see a larger version.

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press