PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of narLink to Publisher's site
 
Nucleic Acids Res. 1988 February 25; 16(4): 1563–1575.
PMCID: PMC336335

McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning.

Abstract

The McrA and McrB (modified cytosine restriction) systems of E. coli interfere with incoming DNA containing methylcytosine. DNA from many organisms, including all mammalian and plant DNA, is expected to be sensitive, and this could interfere with cloning experiments. The McrA and B phenotypes of a few strains have been reported previously (1-4). The Mcr phenotypes of 94 strains, primarily derived from E. coli K12, are tabulated here. We briefly review some evidence suggesting that McrB restriction of mouse-modified DNA does occur in vivo and does in fact interfere with cloning of specific mouse sequences.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (981K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Raleigh EA, Wilson G. Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9070–9074. [PubMed]
  • Blumenthal RM. The Pvu II restriction-modification system: cloning, characterization and use in revealing an E. coli barrier to certain methylases or methylated DNAs. Gene Amplif Anal. 1987;5:227–245. [PubMed]
  • Raleigh EA. Restriction and modification in vivo by Escherichia coli K12. Methods Enzymol. 1987;152:130–141. [PubMed]
  • Roberts RJ. Restriction enzymes and their isoschizomers. Nucleic Acids Res. 1987;15 (Suppl):r189–r217. [PMC free article] [PubMed]
  • Blumenthal RM, Gregory SA, Cooperider JS. Cloning of a restriction-modification system from Proteus vulgaris and its use in analyzing a methylase-sensitive phenotype in Escherichia coli. J Bacteriol. 1985 Nov;164(2):501–509. [PMC free article] [PubMed]
  • Noyer-Weidner M, Diaz R, Reiners L. Cytosine-specific DNA modification interferes with plasmid establishment in Escherichia coli K12: involvement of rglB. Mol Gen Genet. 1986 Dec;205(3):469–475. [PubMed]
  • Heitman J, Model P. Site-specific methylases induce the SOS DNA repair response in Escherichia coli. J Bacteriol. 1987 Jul;169(7):3243–3250. [PMC free article] [PubMed]
  • Kiss A, Posfai G, Keller CC, Venetianer P, Roberts RJ. Nucleotide sequence of the BsuRI restriction-modification system. Nucleic Acids Res. 1985 Sep 25;13(18):6403–6421. [PMC free article] [PubMed]
  • LURIA SE, HUMAN ML. A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol. 1952 Oct;64(4):557–569. [PMC free article] [PubMed]
  • Revel HR. Restriction of nonglucosylated T-even bacteriophage: properties of permissive mutants of Escherichia coli B and K12. Virology. 1967 Apr;31(4):688–701. [PubMed]
  • Ehrlich M, Wang RY. 5-Methylcytosine in eukaryotic DNA. Science. 1981 Jun 19;212(4501):1350–1357. [PubMed]
  • Young RA, Davis RW. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. [PubMed]
  • Signer ER, Beckwith JR, Brenner S. Mapping of suppressor loci in Escherichia coli. J Mol Biol. 1965 Nov;14(1):153–166. [PubMed]
  • Janulaitis A, Klimasauskas S, Petrusyte M, Butkus V. Cytosine modification in DNA by BcnI methylase yields N4-methylcytosine. FEBS Lett. 1983 Sep 5;161(1):131–134. [PubMed]
  • Ehrlich M, Gama-Sosa MA, Carreira LH, Ljungdahl LG, Kuo KC, Gehrke CW. DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res. 1985 Feb 25;13(4):1399–1412. [PMC free article] [PubMed]
  • Ehrlich M, Wilson GG, Kuo KC, Gehrke CW. N4-methylcytosine as a minor base in bacterial DNA. J Bacteriol. 1987 Mar;169(3):939–943. [PMC free article] [PubMed]
  • Wertman KF, Wyman AR, Botstein D. Host/vector interactions which affect the viability of recombinant phage lambda clones. Gene. 1986;49(2):253–262. [PubMed]
  • Brody H, Greener A, Hill CW. Excision and reintegration of the Escherichia coli K-12 chromosomal element e14. J Bacteriol. 1985 Mar;161(3):1112–1117. [PMC free article] [PubMed]
  • Sancar A, Hack AM, Rupp WD. Simple method for identification of plasmid-coded proteins. J Bacteriol. 1979 Jan;137(1):692–693. [PMC free article] [PubMed]
  • Borck K, Beggs JD, Brammar WJ, Hopkins AS, Murray NE. The construction in vitro of transducing derivatives of phage lambda. Mol Gen Genet. 1976 Jul 23;146(2):199–207. [PubMed]
  • Murray NE, Brammar WJ, Murray K. Lambdoid phages that simplify the recovery of in vitro recombinants. Mol Gen Genet. 1977 Jan 7;150(1):53–61. [PubMed]
  • Stahl FW, Kobayashi I, Thaler D, Stahl MM. Direction of travel of RecBC recombinase through bacteriophage lambda DNA. Genetics. 1986 Jun;113(2):215–227. [PubMed]
  • Boyer HW, Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. [PubMed]
  • Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. [PubMed]
  • Hubacek J, Glover SW. Complementation analysis of temperature-sensitive host specificity mutations in Escherichia coli. J Mol Biol. 1970 May 28;50(1):111–127. [PubMed]
  • Plasterk RH, Ilmer TA, Van de Putte P. Site-specific recombination by Gin of bacteriophage Mu: inversions and deletions. Virology. 1983 May;127(1):24–36. [PubMed]
  • Casadaban MJ, Cohen SN. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. [PubMed]
  • Gough JA, Murray NE. Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol. 1983 May 5;166(1):1–19. [PubMed]
  • Frischauf AM, Lehrach H, Poustka A, Murray N. Lambda replacement vectors carrying polylinker sequences. J Mol Biol. 1983 Nov 15;170(4):827–842. [PubMed]
  • Karn J, Brenner S, Barnett L, Cesareni G. Novel bacteriophage lambda cloning vector. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5172–5176. [PubMed]
  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JH, Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed]
  • Wood WB. Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. J Mol Biol. 1966 Mar;16(1):118–133. [PubMed]
  • Young RA, Davis RW. Yeast RNA polymerase II genes: isolation with antibody probes. Science. 1983 Nov 18;222(4625):778–782. [PubMed]
  • Witkin EM. Genetics of Resistance to Radiation in ESCHERICHIA COLI. Genetics. 1947 May;32(3):221–248. [PubMed]
  • BERTANI G, WEIGLE JJ. Host controlled variation in bacterial viruses. J Bacteriol. 1953 Feb;65(2):113–121. [PMC free article] [PubMed]
  • Sain B, Murray NE. The hsd (host specificity) genes of E. coli K 12. Mol Gen Genet. 1980;180(1):35–46. [PubMed]
  • Hanahan D, Gluzman Y. Rescue of functional replication origins from embedded configurations in a plasmid carrying the adenovirus genome. Mol Cell Biol. 1984 Feb;4(2):302–309. [PMC free article] [PubMed]
  • Hanahan D, Lane D, Lipsich L, Wigler M, Botchan M. Characteristics of an SV40-plasmid recombinant and its movement into and out of the genome of a murine cell. Cell. 1980 Aug;21(1):127–139. [PubMed]
  • Westaway D, Goodman PA, Mirenda CA, McKinley MP, Carlson GA, Prusiner SB. Distinct prion proteins in short and long scrapie incubation period mice. Cell. 1987 Nov 20;51(4):651–662. [PubMed]
  • Wyman AR, Wertman KF, Barker D, Helms C, Petri WH. Factors which equalize the representation of genome segments in recombinant libraries. Gene. 1986;49(2):263–271. [PubMed]
  • Mullins JJ, Burt DW, Windass JD, McTurk P, George H, Brammar WJ. Molecular cloning of two distinct renin genes from the DBA/2 mouse. EMBO J. 1982;1(11):1461–1466. [PubMed]
  • Proffitt JH, Davie JR, Swinton D, Hattman S. 5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA. Mol Cell Biol. 1984 May;4(5):985–988. [PMC free article] [PubMed]
  • Urieli-Shoval S, Gruenbaum Y, Sedat J, Razin A. The absence of detectable methylated bases in Drosophila melanogaster DNA. FEBS Lett. 1982 Sep 6;146(1):148–152. [PubMed]
  • Meissner PS, Sisk WP, Berman ML. Bacteriophage lambda cloning system for the construction of directional cDNA libraries. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4171–4175. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press