PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bmcmudisBioMed Centralsearchsubmit a manuscriptregisterthis articleBMC Musculoskeletal Disorders
 
BMC Musculoskelet Disord. 2012; 13: 33.
Published online Mar 9, 2012. doi:  10.1186/1471-2474-13-33
PMCID: PMC3355031
New method for detection of complex 3D fracture motion - Verification of an optical motion analysis system for biomechanical studies
Stefan Doebele,corresponding author#1 Sebastian Siebenlist,#1 Helen Vester,1 Petra Wolf,2 Ulrich Hagn,3 Ulrich Schreiber,1 Ulrich Stöckle,4 and Martin Lucke1
1Department of Trauma Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
2Institut of medical statistics and epidemiology, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
3Institute of Robotics and Mechatronics, German Aerospace Center, DLR, Oberpfaffenhofen, Münchner Straße 20, 82234 Weßling, Germany
4BGU Klinik Tübingen, Schnarrenbergstr. 96, 72076 Tübingen, Germany
corresponding authorCorresponding author.
#Contributed equally.
Stefan Doebele: doebele/at/tum.de; Sebastian Siebenlist: sebastian.siebenlist/at/mri.tum.de; Helen Vester: helen.vester/at/mri.tum.de; Petra Wolf: petra.wolf/at/tum.de; Ulrich Hagn: ulrich.hagn/at/dlr.de; Ulrich Schreiber: uschreiber/at/tum.de; Ulrich Stöckle: ustoeckle/at/bg-tuebingen.de; Martin Lucke: martin.lucke/at/mri.tum.de
Received June 11, 2011; Accepted March 9, 2012.
Abstract
Background
Fracture-healing depends on interfragmentary motion. For improved osteosynthesis and fracture-healing, the micromotion between fracture fragments is undergoing intensive research. The detection of 3D micromotions at the fracture gap still presents a challenge for conventional tactile measurement systems. Optical measurement systems may be easier to use than conventional systems, but, as yet, cannot guarantee accuracy. The purpose of this study was to validate the optical measurement system PONTOS 5M for use in biomechanical research, including measurement of micromotion.
Methods
A standardized transverse fracture model was created to detect interfragmentary motions under axial loadings of up to 200 N. Measurements were performed using the optical measurement system and compared with a conventional high-accuracy tactile system consisting of 3 standard digital dial indicators (1 μm resolution; 5 μm error limit).
Results
We found that the deviation in the mean average motion detection between the systems was at most 5.3 μm, indicating that detection of micromotion was possible with the optical measurement system. Furthermore, we could show two considerable advantages while using the optical measurement system. Only with the optical system interfragmentary motion could be analyzed directly at the fracture gap. Furthermore, the calibration of the optical system could be performed faster, safer and easier than that of the tactile system.
Conclusion
The PONTOS 5 M optical measurement system appears to be a favorable alternative to previously used tactile measurement systems for biomechanical applications. Easy handling, combined with a high accuracy for 3D detection of micromotions (≤ 5 μm), suggests the likelihood of high user acceptance. This study was performed in the context of the deployment of a new implant (dynamic locking screw; Synthes, Oberdorf, Switzerland).
Articles from BMC Musculoskeletal Disorders are provided here courtesy of
BioMed Central