Search tips
Search criteria 


Logo of narLink to Publisher's site
Nucleic Acids Res. 1988 February 11; 16(3): 925–939.
PMCID: PMC334728

Characterization of the 'unusual' mobility of large circular DNAs in pulsed field-gradient electrophoresis.


Large circular amplified DNAs (30 and 85 kb) present in methotrexate-resistant Leishmania major appear to migrate anomalously in pulsed field-gradient electrophoresis (PFGE), exhibiting pulse time-dependent mobility and migrating along a different apparent path relative to the large linear chromosomal DNAs. Quantitative studies indicate that the relative pulse-time dependence is actually conferred by the mobility properties of the large linear DNAs. One contributing factor to the difference in migration path is variability in the intrinsic voltage-dependence of mobility of supercoiled and linear DNAs, in combination with the asymmetrical/inhomogeneous voltage gradients. Certain linear chromosomes exhibit a previously undescribed pulse-time dependence in the voltage-dependence of mobility. When enzymatically relaxed or physically nicked the large circular DNAs fail to leave the well using any pulse time, a property also observed in conventional electrophoresis. These findings are relevant to PFGE theory, and its application to the study of circular DNA amplification in Leishmania and other species.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Rush MG, Misra R. Extrachromosomal DNA in eucaryotes. Plasmid. 1985 Nov;14(3):177–191. [PubMed]
  • Beverley SM, Coderre JA, Santi DV, Schimke RT. Unstable DNA amplifications in methotrexate-resistant Leishmania consist of extrachromosomal circles which relocalize during stabilization. Cell. 1984 Sep;38(2):431–439. [PubMed]
  • Garvey EP, Coderre JA, Santi DV. Selection and properties of Leishmania tropica resistant to 10-propargyl-5,8-dideazafolate, an inhibitor of thymidylate synthetase. Mol Biochem Parasitol. 1985 Oct;17(1):79–91. [PubMed]
  • Garvey EP, Santi DV. Stable amplified DNA in drug-resistant Leishmania exists as extrachromosomal circles. Science. 1986 Aug 1;233(4763):535–540. [PubMed]
  • Beverley SM, Ellenberger TE, Cordingley JS. Primary structure of the gene encoding the bifunctional dihydrofolate reductase-thymidylate synthase of Leishmania major. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2584–2588. [PubMed]
  • Grumont R, Washtien WL, Caput D, Santi DV. Bifunctional thymidylate synthase-dihydrofolate reductase from Leishmania tropica: sequence homology with the corresponding monofunctional proteins. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5387–5391. [PubMed]
  • Schimke RT. Gene amplification in cultured animal cells. Cell. 1984 Jul;37(3):705–713. [PubMed]
  • Stark GR, Wahl GM. Gene amplification. Annu Rev Biochem. 1984;53:447–491. [PubMed]
  • Schwartz DC, Cantor CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. [PubMed]
  • Carle GF, Olson MV. Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res. 1984 Jul 25;12(14):5647–5664. [PMC free article] [PubMed]
  • Carle GF, Frank M, Olson MV. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science. 1986 Apr 4;232(4746):65–68. [PubMed]
  • Chu G, Vollrath D, Davis RW. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. [PubMed]
  • Gardiner K, Laas W, Patterson D. Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis. Somat Cell Mol Genet. 1986 Mar;12(2):185–195. [PubMed]
  • Carle GF, Olson MV. An electrophoretic karyotype for yeast. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3756–3760. [PubMed]
  • Scholler JK, Reed SG, Stuart K. Molecular karyotype of species and subspecies of Leishmania. Mol Biochem Parasitol. 1986 Sep;20(3):279–293. [PubMed]
  • Comeau AM, Miller SI, Wirth DF. Chromosome location of four genes in Leishmania. Mol Biochem Parasitol. 1986 Nov;21(2):161–169. [PubMed]
  • Giannini SH, Schittini M, Keithly JS, Warburton PW, Cantor CR, Van der Ploeg LH. Karyotype analysis of Leishmania species and its use in classification and clinical diagnosis. Science. 1986 May 9;232(4751):762–765. [PubMed]
  • Spithill TW, Samaras N. The molecular karyotype of Leishmania major and mapping of alpha and beta tubulin gene families to multiple unlinked chromosomal loci. Nucleic Acids Res. 1985 Jun 11;13(11):4155–4169. [PMC free article] [PubMed]
  • Hightower RC, Metge DW, Santi DV. Plasmid migration using orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res. 1987 Oct 26;15(20):8387–8398. [PMC free article] [PubMed]
  • Ebrahimzadeh A, Jones TC. A comparative study of different Leishmania tropica isolates from Iran: correlation between infectivity and cytochemical properties. Am J Trop Med Hyg. 1983 Jul;32(4):694–702. [PubMed]
  • Beverley SM, Ismach RB, Pratt DM. Evolution of the genus Leishmania as revealed by comparisons of nuclear DNA restriction fragment patterns. Proc Natl Acad Sci U S A. 1987 Jan;84(2):484–488. [PubMed]
  • Coderre JA, Beverley SM, Schimke RT, Santi DV. Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2132–2136. [PubMed]
  • Van der Ploeg LH, Schwartz DC, Cantor CR, Borst P. Antigenic variation in Trypanosoma brucei analyzed by electrophoretic separation of chromosome-sized DNA molecules. Cell. 1984 May;37(1):77–84. [PubMed]
  • Schindler CW, Krolewski JJ, Rush MG. Selective trapping of circular double-stranded DNA molecules in solidifying agarose. Plasmid. 1982 May;7(3):263–270. [PubMed]
  • Mickel S, Arena V, Jr, Bauer W. Physical properties and gel electrophoresis behavior of R12-derived plasmid DNAs. Nucleic Acids Res. 1977;4(5):1465–1482. [PMC free article] [PubMed]
  • Johnson PH, Grossman LI. Electrophoresis of DNA in agarose gels. Optimizing separations of conformational isomers of double- and single-stranded DNAs. Biochemistry. 1977 Sep 20;16(19):4217–4225. [PubMed]
  • Serwer P, Allen JL. Conformation of double-stranded DNA during agarose gel electrophoresis: fractionation of linear and circular molecules with molecular weights between 3 X 10(6) and 26 X 10(6). Biochemistry. 1984 Feb 28;23(5):922–927. [PubMed]
  • Levene SD, Zimm BH. Separations of open-circular DNA using pulsed-field electrophoresis. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4054–4057. [PubMed]
  • Gellert M. DNA topoisomerases. Annu Rev Biochem. 1981;50:879–910. [PubMed]
  • Fisher MP, Dingman CW. Role of molecular conformation in determining the electrophoretic properties of polynucleotides in agarose-acrylamide composite gels. Biochemistry. 1971 May 11;10(10):1895–1899. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press