PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 May 1; 68(Pt 5): o1373.
Published online 2012 April 13. doi:  10.1107/S1600536812014596
PMCID: PMC3344504

(E)-Methyl 2-({2-eth­oxy-6-[(E)-(hy­droxy­imino)­meth­yl]phen­oxy}meth­yl)-3-phenyl­acrylate

Abstract

In the title compound, C20H21NO5, the dihedral angle between the mean planes through the two rings is 47.1 (8)°. The enoate group assumes an extended conformation. The hy­droxy­ethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane being 0.061 (1) Å for the O atom. In the crystal, mol­ecules are linked into cyclic centrosymmetric dimers with an R 2 2(6) motif via pairs of O—H(...)N hydrogen bonds. Inter­molecular C—H(...)O hydrogen bonds form a C(8) chain along the b axis. The crystal packing is further stabilized by C—H(...)π inter­actions.

Related literature  

For the biological activity of caffeic acids and their esters, see: Hwang et al. (2001 [triangle]); Altug et al. (2008 [triangle]); Ates et al. (2006 [triangle]); Atik et al. (2006 [triangle]); Chaudhuri (2003 [triangle]); Padinchare et al. (2001 [triangle]). For a related structure, see: SakthiMurugesan et al. (2011 [triangle]). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-o1373-scheme1.jpg

Experimental  

Crystal data  

  • C20H21NO5
  • M r = 355.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-o1373-efi2.jpg
  • a = 7.4009 (3) Å
  • b = 22.1125 (10) Å
  • c = 11.3681 (5) Å
  • β = 103.561 (1)°
  • V = 1808.55 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.25 × 0.22 × 0.19 mm

Data collection  

  • Bruker APEXII CCD area detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.978, T max = 0.983
  • 25247 measured reflections
  • 6042 independent reflections
  • 4293 reflections with I > 2σ(I)
  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.167
  • S = 1.02
  • 6042 reflections
  • 238 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812014596/rn2100sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014596/rn2100Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812014596/rn2100Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

EG and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

Comment

Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008). These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and anti-inflammatory properties (Atik et al., 2006; Padinchare et al., 2001; Ates et al., 2006). Oximes are a classical type of chelating ligand which are widely used in coordination and analytical chemistry (Chaudhuri, 2003).

In the title compound (see Fig. 1) the bond lengths and angles agree with those observed in other acrylate derivatives (SakthiMurugesan et al., 2011). The whole molecule is not planar as the dihedral angle between the two phenyl rings is 47.1 (8)°. The oxime C—N has an E configuration. The hydroxyethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane being 0.004 (1) Å for the C2 atom.

The ether group assumes an extended conformation as can be seen from torsion angles C11—C12—O5—C13 [-174.7 (1) °] and C10—C11—C12—O5 [170.7 (1) °]. C—H···O hydrogen bonds (see Table 1) form C(8) chains along (Bernstein et al. 1995) the b axis. The hydroxyethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the R22(6) motif. The closest C—H-centroid separation is 3.6 Å therefore there are not significant C—H···π interactions. In addition to van der Waals interactions the crystal packing is stabilized by C–H···O and O–H···N interactions.

Experimental

To a stirred solution of (E)-methyl 2-((2-ethoxy-6-formylphenoxy)methyl) -3-phenylacrylate (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and the crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 x 15 ml). The combined organic layer was washed with brine (2 x 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (E)-methyl2-((2-ethoxy- 6-((E)-(hydroxyimino)methyl)phenoxy)methyl)-3-phenylacrylate as a colourless solid.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.
View of the title molecule with the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
The crystal structure showing the centrosymmetric hydrogen bond motif R22(6). For the sake of clarity, the H atoms not involved in the motif have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (2-x, -y, 2-z). The dashed ...

Crystal data

C20H21NO5F(000) = 752
Mr = 355.38Dx = 1.305 Mg m3Dm = 1.375 Mg m3Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6042 reflections
a = 7.4009 (3) Åθ = 1.8–31.6°
b = 22.1125 (10) ŵ = 0.09 mm1
c = 11.3681 (5) ÅT = 293 K
β = 103.561 (1)°Block, white crystalline
V = 1808.55 (14) Å30.25 × 0.22 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD area detector diffractometer6042 independent reflections
Radiation source: fine-focus sealed tube4293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and [var phi] scansθmax = 31.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.978, Tmax = 0.983k = −32→32
25247 measured reflectionsl = −14→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0873P)2 + 0.3814P] where P = (Fo2 + 2Fc2)/3
6042 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.66305 (18)0.04722 (6)0.86324 (12)0.0369 (3)
H10.63480.04140.77990.044*
C20.52766 (17)0.07679 (6)0.91943 (11)0.0313 (2)
C30.5530 (2)0.08059 (6)1.04563 (12)0.0385 (3)
H30.65890.06411.09600.046*
C40.4225 (2)0.10847 (7)1.09493 (12)0.0423 (3)
H40.43920.10971.17860.051*
C50.2661 (2)0.13482 (7)1.02182 (13)0.0415 (3)
H50.17910.15391.05630.050*
C60.23961 (18)0.13273 (6)0.89702 (11)0.0337 (3)
C70.36826 (16)0.10210 (5)0.84560 (10)0.0291 (2)
C8−0.0070 (3)0.20593 (10)0.86177 (17)0.0632 (5)
H8A0.07400.22930.92500.076*
H8B−0.10260.18720.89510.076*
C9−0.0933 (3)0.24597 (10)0.7579 (2)0.0772 (6)
H9A0.00130.26080.72020.116*
H9B−0.15320.27950.78670.116*
H9C−0.18340.22340.70000.116*
C100.17647 (18)0.06976 (7)0.65716 (11)0.0372 (3)
H10A0.07620.09890.63490.045*
H10B0.14010.03930.70850.045*
C110.21243 (17)0.04080 (6)0.54594 (11)0.0329 (3)
C120.28726 (19)−0.02179 (7)0.56460 (13)0.0388 (3)
C130.3504 (3)−0.11301 (8)0.4760 (2)0.0604 (5)
H13A0.4669−0.11610.53460.091*
H13B0.3642−0.12830.39960.091*
H13C0.2580−0.13620.50280.091*
C140.17680 (17)0.06620 (6)0.43559 (11)0.0335 (3)
H140.20150.04210.37420.040*
C150.10419 (17)0.12684 (6)0.39869 (11)0.0335 (3)
C160.1278 (2)0.17773 (7)0.47358 (14)0.0432 (3)
H160.19680.17470.55310.052*
C170.0490 (2)0.23275 (7)0.43013 (16)0.0513 (4)
H170.06510.26630.48080.062*
C18−0.0529 (2)0.23794 (8)0.31254 (17)0.0531 (4)
H18−0.10720.27470.28440.064*
C19−0.0744 (2)0.18858 (8)0.23667 (15)0.0522 (4)
H19−0.14200.19210.15700.063*
C200.0045 (2)0.13382 (7)0.27890 (13)0.0422 (3)
H20−0.00910.10090.22660.051*
N10.81897 (15)0.02940 (6)0.92689 (10)0.0383 (3)
O10.92841 (16)0.00226 (6)0.85611 (10)0.0534 (3)
H1A1.0254−0.01010.90010.080*
O20.09792 (15)0.16043 (5)0.81645 (9)0.0468 (3)
O30.34510 (11)0.09991 (4)0.72187 (7)0.0319 (2)
O40.3345 (2)−0.04452 (6)0.66304 (12)0.0700 (4)
O50.29384 (17)−0.05077 (5)0.46293 (10)0.0503 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0359 (6)0.0413 (7)0.0303 (6)0.0062 (5)0.0017 (5)−0.0023 (5)
C20.0332 (5)0.0295 (6)0.0281 (5)0.0018 (4)0.0011 (4)−0.0014 (4)
C30.0446 (7)0.0380 (7)0.0282 (6)0.0048 (5)−0.0008 (5)0.0006 (5)
C40.0565 (8)0.0434 (7)0.0256 (6)0.0044 (6)0.0067 (5)−0.0007 (5)
C50.0496 (8)0.0433 (7)0.0336 (7)0.0087 (6)0.0140 (6)−0.0007 (5)
C60.0362 (6)0.0328 (6)0.0312 (6)0.0052 (5)0.0061 (5)0.0005 (5)
C70.0319 (5)0.0292 (5)0.0247 (5)0.0005 (4)0.0038 (4)0.0003 (4)
C80.0637 (10)0.0767 (13)0.0540 (10)0.0377 (10)0.0236 (8)0.0090 (9)
C90.0768 (14)0.0746 (14)0.0834 (15)0.0377 (11)0.0253 (12)0.0154 (11)
C100.0307 (6)0.0521 (8)0.0277 (6)−0.0065 (5)0.0046 (4)−0.0026 (5)
C110.0293 (5)0.0399 (6)0.0274 (6)−0.0034 (5)0.0021 (4)−0.0004 (5)
C120.0347 (6)0.0416 (7)0.0364 (7)−0.0033 (5)0.0007 (5)0.0059 (5)
C130.0545 (9)0.0386 (8)0.0902 (14)0.0061 (7)0.0213 (9)0.0016 (8)
C140.0353 (6)0.0363 (6)0.0275 (6)0.0001 (5)0.0044 (5)−0.0028 (5)
C150.0321 (5)0.0375 (6)0.0300 (6)0.0007 (5)0.0058 (4)−0.0004 (5)
C160.0461 (7)0.0426 (8)0.0376 (7)0.0019 (6)0.0030 (6)−0.0063 (6)
C170.0570 (9)0.0411 (8)0.0550 (9)0.0062 (7)0.0117 (7)−0.0097 (7)
C180.0524 (9)0.0442 (8)0.0607 (10)0.0163 (7)0.0091 (7)0.0044 (7)
C190.0556 (9)0.0531 (9)0.0410 (8)0.0107 (7)−0.0023 (7)0.0050 (7)
C200.0507 (8)0.0405 (7)0.0318 (6)0.0032 (6)0.0023 (6)−0.0018 (5)
N10.0344 (5)0.0451 (6)0.0338 (5)0.0073 (4)0.0043 (4)−0.0037 (5)
O10.0444 (6)0.0776 (8)0.0371 (5)0.0225 (5)0.0070 (4)−0.0060 (5)
O20.0454 (5)0.0547 (6)0.0384 (5)0.0229 (5)0.0059 (4)0.0001 (4)
O30.0299 (4)0.0403 (5)0.0238 (4)−0.0013 (3)0.0032 (3)0.0005 (3)
O40.0975 (11)0.0573 (8)0.0452 (7)0.0093 (7)−0.0035 (7)0.0172 (6)
O50.0609 (7)0.0410 (6)0.0482 (6)0.0104 (5)0.0109 (5)0.0010 (5)

Geometric parameters (Å, º)

C1—N11.2723 (16)C10—H10B0.9700
C1—C21.4627 (18)C11—C141.3429 (18)
C1—H10.9300C11—C121.487 (2)
C2—C71.3947 (16)C12—O41.2014 (17)
C2—C31.4051 (18)C12—O51.3324 (19)
C3—C41.371 (2)C13—O51.436 (2)
C3—H30.9300C13—H13A0.9600
C4—C51.385 (2)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.3866 (19)C14—C151.4687 (18)
C5—H50.9300C14—H140.9300
C6—O21.3650 (15)C15—C201.3970 (18)
C6—C71.4029 (17)C15—C161.3971 (19)
C7—O31.3774 (14)C16—C171.389 (2)
C8—O21.4382 (19)C16—H160.9300
C8—C91.494 (3)C17—C181.377 (2)
C8—H8A0.9700C17—H170.9300
C8—H8B0.9700C18—C191.377 (2)
C9—H9A0.9600C18—H180.9300
C9—H9B0.9600C19—C201.381 (2)
C9—H9C0.9600C19—H190.9300
C10—O31.4536 (15)C20—H200.9300
C10—C111.4957 (18)N1—O11.4034 (15)
C10—H10A0.9700O1—H1A0.8200
N1—C1—C2120.86 (12)C14—C11—C12120.50 (12)
N1—C1—H1119.6C14—C11—C10125.14 (13)
C2—C1—H1119.6C12—C11—C10114.32 (11)
C7—C2—C3118.81 (12)O4—C12—O5123.03 (15)
C7—C2—C1119.08 (11)O4—C12—C11122.64 (15)
C3—C2—C1122.11 (11)O5—C12—C11114.32 (12)
C4—C3—C2120.40 (12)O5—C13—H13A109.5
C4—C3—H3119.8O5—C13—H13B109.5
C2—C3—H3119.8H13A—C13—H13B109.5
C3—C4—C5120.89 (12)O5—C13—H13C109.5
C3—C4—H4119.6H13A—C13—H13C109.5
C5—C4—H4119.6H13B—C13—H13C109.5
C4—C5—C6119.84 (13)C11—C14—C15128.85 (12)
C4—C5—H5120.1C11—C14—H14115.6
C6—C5—H5120.1C15—C14—H14115.6
O2—C6—C5125.00 (12)C20—C15—C16117.84 (13)
O2—C6—C7115.26 (11)C20—C15—C14116.97 (12)
C5—C6—C7119.70 (12)C16—C15—C14125.18 (12)
O3—C7—C2119.05 (11)C17—C16—C15120.45 (14)
O3—C7—C6120.55 (10)C17—C16—H16119.8
C2—C7—C6120.27 (11)C15—C16—H16119.8
O2—C8—C9107.33 (15)C18—C17—C16120.46 (15)
O2—C8—H8A110.2C18—C17—H17119.8
C9—C8—H8A110.2C16—C17—H17119.8
O2—C8—H8B110.2C17—C18—C19119.90 (15)
C9—C8—H8B110.2C17—C18—H18120.1
H8A—C8—H8B108.5C19—C18—H18120.1
C8—C9—H9A109.5C18—C19—C20120.01 (15)
C8—C9—H9B109.5C18—C19—H19120.0
H9A—C9—H9B109.5C20—C19—H19120.0
C8—C9—H9C109.5C19—C20—C15121.30 (14)
H9A—C9—H9C109.5C19—C20—H20119.4
H9B—C9—H9C109.5C15—C20—H20119.4
O3—C10—C11108.81 (10)C1—N1—O1112.01 (11)
O3—C10—H10A109.9N1—O1—H1A109.5
C11—C10—H10A109.9C6—O2—C8117.90 (12)
O3—C10—H10B109.9C7—O3—C10114.80 (9)
C11—C10—H10B109.9C12—O5—C13116.09 (14)
H10A—C10—H10B108.3
N1—C1—C2—C7172.39 (13)C12—C11—C14—C15−179.71 (12)
N1—C1—C2—C3−7.6 (2)C10—C11—C14—C152.7 (2)
C7—C2—C3—C40.3 (2)C11—C14—C15—C20−152.45 (14)
C1—C2—C3—C4−179.74 (14)C11—C14—C15—C1627.8 (2)
C2—C3—C4—C5−1.8 (2)C20—C15—C16—C171.9 (2)
C3—C4—C5—C60.5 (2)C14—C15—C16—C17−178.35 (14)
C4—C5—C6—O2−175.45 (14)C15—C16—C17—C18−0.2 (3)
C4—C5—C6—C72.2 (2)C16—C17—C18—C19−1.1 (3)
C3—C2—C7—O3178.30 (11)C17—C18—C19—C200.7 (3)
C1—C2—C7—O3−1.65 (18)C18—C19—C20—C151.1 (3)
C3—C2—C7—C62.38 (19)C16—C15—C20—C19−2.4 (2)
C1—C2—C7—C6−177.57 (12)C14—C15—C20—C19177.90 (15)
O2—C6—C7—O3−1.64 (18)C2—C1—N1—O1179.96 (12)
C5—C6—C7—O3−179.51 (12)C5—C6—O2—C814.9 (2)
O2—C6—C7—C2174.22 (12)C7—C6—O2—C8−162.82 (15)
C5—C6—C7—C2−3.7 (2)C9—C8—O2—C6156.80 (17)
O3—C10—C11—C14−93.89 (15)C2—C7—O3—C10122.08 (13)
O3—C10—C11—C1288.35 (13)C6—C7—O3—C10−62.01 (15)
C14—C11—C12—O4174.10 (15)C11—C10—O3—C7−149.29 (11)
C10—C11—C12—O4−8.0 (2)O4—C12—O5—C133.8 (2)
C14—C11—C12—O5−7.17 (18)C11—C12—O5—C13−174.95 (13)
C10—C11—C12—O5170.71 (11)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C15–C20 ring.

D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.082.8121 (15)149
C4—H4···O4ii0.932.593.2379 (18)127
C20—H20···O1iii0.932.593.466 (2)157
C9—H9B···Cg2iv0.962.793.616 (2)145

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y, −z+2; (iii) −x+1, −y, −z+1; (iv) x−3/2, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2100).

References

  • Altug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135–142. [PubMed]
  • Ates, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283–289. [PubMed]
  • Atik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293–297. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Hwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429–1437. [PubMed]
  • Padinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215–217.
  • SakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography