PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. May 1, 2012; 68(Pt 5): o1289–o1290.
Published online Apr 4, 2012. doi:  10.1107/S160053681201344X
PMCID: PMC3344438
Diethyl 4-[5-(4-chloro­phen­yl)-1H-pyrazol-4-yl]-2,6-dimethyl-1,4-dihydro­pyridine-3,5-dicarboxyl­ate
Hoong-Kun Fun,a* Wan-Sin Loh,a§ A. M. Vijesh,b Arun M. Isloor,b and Shridhar Malladib
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
bDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
Correspondence e-mail: hkfun/at/usm.my
Thomson Reuters ResearcherID: A-3561-2009.
§Thomson Reuters ResearcherID: C-7581-2009.
Additional address: SeQuent Scientific Ltd, No. 120 A & B Industrial Area, Baikampady, New Mangalore 575 011, Karnataka, India.
Received March 26, 2012; Accepted March 28, 2012.
Abstract
In the title compound, C22H24ClN3O4, intra­molecular C—H(...)O and C—H(...)N hydrogen bonds form S(9) and S(7) ring motifs, respectively. The 1,4-dihydro­pyridine ring adopts a flattened boat conformation. The benzene ring makes a dihedral angle of 33.36 (6)° with the pyrazole ring. In the crystal, pairs of N—H(...)N hydrogen bonds link the mol­ecules into inversion dimers. The dimers are stacked in column along the a axis through N—H(...)O and C—H(...)N hydrogen bonds. The crystal packing also features C—H(...)π inter­actions involving the pyrazole ring.
Related literature  
For background to and applications of 1,4-dihydro­pyridines, see: Janis & Triggle (1983 [triangle]); Boecker & Guengerich (1986 [triangle]); Gordeev et al. (1996 [triangle]); Buhler & Kiowski (1987 [triangle]); Vo et al. (1995 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For a related structure, see: Fun et al. (2012 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-68-o1289-scheme1.jpg Object name is e-68-o1289-scheme1.jpg
Crystal data  
  • C22H24ClN3O4
  • M r = 429.89
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-o1289-efi1.jpg
  • a = 8.5210 (5) Å
  • b = 10.7809 (6) Å
  • c = 11.2707 (7) Å
  • α = 90.411 (1)°
  • β = 97.205 (1)°
  • γ = 94.210 (1)°
  • V = 1024.28 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 100 K
  • 0.38 × 0.18 × 0.17 mm
Data collection  
  • Bruker SMART APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.921, T max = 0.964
  • 17114 measured reflections
  • 5885 independent reflections
  • 5038 reflections with I > 2σ(I)
  • R int = 0.027
Refinement  
  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.107
  • S = 1.04
  • 5885 reflections
  • 283 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.29 e Å−3
Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201344X/is5103sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201344X/is5103Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681201344X/is5103Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PFIZIK/811160). AMI thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for the Young Scientist award. AMV is thankful to Dr Arulmoli, Vice President (R&D) and the management, SeQuent Scientific Ltd, New Mangalore, India, for their invaluable support and allocation of resources for this work.
supplementary crystallographic information
Comment
In recent years, considerable attention has been paid to the synthesis of 1,4-dihydropyridines owing to their significant biological activity. 1,4-Dihydropyridine-containing drugs (1,4-DHPs), such as nifedipine, nicardipine, amlodipine, felodipine and others have been found to be useful as calcium channel blockers (Janis & Triggle, 1983; Boecker & Guengerich, 1986; Gordeev et al., 1996) and are used most frequently as cardiovascular agents for the treatment of hypertension (Buhler & Kiowski, 1987). A number of DHP derivatives are employed as potential drug candidates for the treatment of congestive heart failure (Vo et al., 1995). Prompted by the diverse activities of 1,4-dihydropyridines, we have synthesized the title compound to study its crystal structure.
In the title compound (Fig. 1), intramolecular C5—H5A···O1 and C8—H8A···N3 hydrogen bonds form S(9) and S(7) ring motifs (Bernstein et al., 1995), respectively. The 1,4-dihydropyridine ring (C10–C12/N3/C13/C14) adopts a flattened boat conformation (Cremer & Pople, 1975) with the puckering parameters, Q = 0.4162 (11) Å; Θ = 74.64 (16)°; [var phi] = 176.34 (17)°. The benzene ring (C1–C6) forms a dihedral angle of 33.36 (6)° with the pyrazole ring (N1/N2/C7–C9). The bond lengths and angles are within the normal ranges and are comparable with the related structure (Fun et al., 2012).
In the crystal packing (Fig. 2), intermolecular N1—H1N1···O4, N3—H1N3···N2 and C22—H22B···N2 hydrogen bonds (Table 1) link the molecules into a column along the a axis. The crystal packing is further stabilized by C—H···π interactions (Table 1) involving the pyrazole ring.
Experimental
3-(4-Chlorophenyl)-1H-pyrazole-4-carbaldehyde (0.2 g, 1.1 mmol), ethylacetoacetate (0.3 g, 2.3 mmol) and ammonium acetate (0.09 g, 1.2 mmol) in ethanol (20 ml) were refluxed for 8 h in an oil bath. After the completion of the reaction, the reaction mixture was concentrated and poured into crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from hot ethanol (0.33 g, 67%). M.p.: 459–461 K.
Refinement
N-bound H atoms were located in a difference Fourier map and were refined freely [N—H = 0.80 (3) to 0.87 (3) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93 to 0.97 Å) and refined with a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. In the final refinement, twelve outliners were omitted, -2 -3 2, 1 -1 1, 4 -2 6, 2 -1 3, -3 -4 5, -3 -6 4, -3 -5 4, 4 -2 5, -2 -2 3, -1 -5 1, 0 4 1 and -2 -6 3.
Figures
Fig. 1.
Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Dashed lines indicate the intramolecular hydrogen bonds.
Fig. 2.
Fig. 2.
A part of crystal packing diagram of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Crystal data
C22H24ClN3O4Z = 2
Mr = 429.89F(000) = 452
Triclinic, P1Dx = 1.394 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5210 (5) ÅCell parameters from 7118 reflections
b = 10.7809 (6) Åθ = 2.4–32.6°
c = 11.2707 (7) ŵ = 0.22 mm1
α = 90.411 (1)°T = 100 K
β = 97.205 (1)°Block, colourless
γ = 94.210 (1)°0.38 × 0.18 × 0.17 mm
V = 1024.28 (10) Å3
Data collection
Bruker SMART APEXII DUO CCD area-detector diffractometer5885 independent reflections
Radiation source: fine-focus sealed tube5038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
[var phi] and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −11→11
Tmin = 0.921, Tmax = 0.964k = −15→15
17114 measured reflectionsl = −15→15
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0519P)2 + 0.4397P] where P = (Fo2 + 2Fc2)/3
5885 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.29 e Å3
Special details
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
Cl10.40990 (4)0.46308 (3)0.70565 (3)0.02708 (9)
O1−0.04200 (12)0.49719 (9)0.17848 (9)0.0248 (2)
O2−0.23718 (10)0.49196 (8)0.02494 (8)0.01812 (18)
O3−0.12624 (10)0.84126 (8)0.44891 (7)0.01690 (17)
O4−0.34579 (10)0.94038 (8)0.39174 (8)0.01770 (17)
N10.32527 (12)0.89803 (9)0.27948 (9)0.01440 (19)
N20.26859 (12)0.96583 (10)0.18490 (9)0.01621 (19)
N3−0.24741 (11)0.87179 (9)0.03539 (9)0.01423 (19)
C10.36646 (14)0.76773 (12)0.50778 (10)0.0169 (2)
H1A0.40780.85010.51200.020*
C20.41253 (14)0.68690 (12)0.59919 (11)0.0197 (2)
H2A0.48500.71490.66420.024*
C30.34984 (14)0.56477 (12)0.59271 (11)0.0192 (2)
C40.24000 (15)0.52106 (12)0.49769 (12)0.0213 (2)
H4A0.19670.43920.49550.026*
C50.19539 (14)0.60170 (12)0.40547 (11)0.0184 (2)
H5A0.12320.57290.34060.022*
C60.25797 (13)0.72537 (11)0.40942 (10)0.0139 (2)
C70.21629 (13)0.80907 (10)0.31024 (10)0.0126 (2)
C80.11965 (13)0.91862 (11)0.15670 (10)0.0156 (2)
H8A0.05010.94770.09470.019*
C90.07844 (13)0.81976 (10)0.23091 (10)0.0127 (2)
C10−0.08660 (12)0.75561 (10)0.22759 (9)0.0122 (2)
H10A−0.08650.69630.29310.015*
C11−0.20389 (13)0.85225 (10)0.24478 (10)0.0127 (2)
C12−0.26584 (12)0.91545 (10)0.14796 (10)0.0129 (2)
C13−0.21330 (13)0.74984 (11)0.01598 (10)0.0144 (2)
C14−0.14542 (13)0.68669 (10)0.11005 (10)0.0132 (2)
C15−0.13184 (13)0.55150 (11)0.10873 (10)0.0156 (2)
C16−0.24515 (15)0.35748 (11)0.02645 (11)0.0192 (2)
H16A−0.26690.32730.10410.023*
H16B−0.14590.32730.00900.023*
C17−0.37844 (15)0.31492 (12)−0.06902 (12)0.0209 (2)
H17A−0.39320.2258−0.06970.031*
H17B−0.35280.3425−0.14560.031*
H17C−0.47430.3494−0.05260.031*
C18−0.23545 (13)0.88366 (10)0.36557 (10)0.0138 (2)
C19−0.14246 (15)0.86913 (13)0.57282 (10)0.0204 (2)
H19A−0.24270.83220.59320.024*
H19B−0.13860.95830.58620.024*
C20−0.00580 (16)0.81475 (14)0.64767 (11)0.0240 (3)
H20A−0.00820.83520.73040.036*
H20B0.09240.84840.62330.036*
H20C−0.01450.72600.63700.036*
C21−0.25953 (15)0.70438 (12)−0.11096 (10)0.0185 (2)
H21A−0.18510.6476−0.13150.028*
H21B−0.25920.7739−0.16370.028*
H21C−0.36380.6626−0.11870.028*
C22−0.34816 (14)1.03355 (11)0.14701 (11)0.0170 (2)
H22A−0.32851.07220.22500.026*
H22B−0.46021.01520.12600.026*
H22C−0.30861.08890.08950.026*
H1N10.424 (2)0.9115 (16)0.3055 (16)0.024 (4)*
H1N3−0.283 (2)0.9163 (17)−0.0293 (17)0.028 (4)*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
Cl10.02373 (16)0.03297 (19)0.02383 (16)0.00309 (12)−0.00125 (11)0.01615 (13)
O10.0259 (5)0.0178 (4)0.0280 (5)0.0062 (4)−0.0099 (4)−0.0029 (4)
O20.0228 (4)0.0133 (4)0.0165 (4)−0.0005 (3)−0.0031 (3)−0.0010 (3)
O30.0169 (4)0.0239 (4)0.0101 (4)0.0046 (3)0.0008 (3)−0.0005 (3)
O40.0135 (4)0.0216 (4)0.0182 (4)0.0023 (3)0.0025 (3)−0.0019 (3)
N10.0114 (4)0.0169 (5)0.0144 (4)0.0002 (3)−0.0002 (3)0.0025 (3)
N20.0139 (4)0.0187 (5)0.0157 (4)0.0008 (4)0.0009 (3)0.0051 (4)
N30.0151 (4)0.0149 (5)0.0123 (4)0.0010 (3)0.0002 (3)0.0033 (3)
C10.0162 (5)0.0192 (5)0.0146 (5)0.0001 (4)0.0001 (4)0.0015 (4)
C20.0170 (5)0.0265 (6)0.0145 (5)−0.0001 (4)−0.0020 (4)0.0033 (4)
C30.0170 (5)0.0244 (6)0.0164 (5)0.0043 (4)0.0013 (4)0.0089 (4)
C40.0204 (6)0.0190 (6)0.0230 (6)−0.0005 (4)−0.0023 (4)0.0058 (5)
C50.0182 (5)0.0178 (5)0.0179 (5)0.0009 (4)−0.0026 (4)0.0023 (4)
C60.0129 (5)0.0173 (5)0.0117 (5)0.0029 (4)0.0014 (4)0.0019 (4)
C70.0120 (5)0.0138 (5)0.0120 (5)0.0012 (4)0.0009 (4)0.0006 (4)
C80.0132 (5)0.0183 (5)0.0148 (5)0.0010 (4)0.0002 (4)0.0038 (4)
C90.0125 (5)0.0138 (5)0.0116 (5)0.0016 (4)0.0006 (4)0.0006 (4)
C100.0119 (4)0.0132 (5)0.0112 (4)0.0006 (4)0.0004 (3)0.0008 (4)
C110.0111 (4)0.0138 (5)0.0130 (5)−0.0003 (4)0.0011 (4)0.0000 (4)
C120.0100 (4)0.0137 (5)0.0146 (5)−0.0007 (4)0.0007 (4)0.0009 (4)
C130.0136 (5)0.0159 (5)0.0132 (5)−0.0007 (4)0.0010 (4)0.0002 (4)
C140.0127 (5)0.0139 (5)0.0127 (5)0.0000 (4)0.0008 (4)−0.0006 (4)
C150.0147 (5)0.0165 (5)0.0154 (5)0.0007 (4)0.0014 (4)−0.0020 (4)
C160.0239 (6)0.0130 (5)0.0197 (5)0.0011 (4)−0.0017 (4)−0.0010 (4)
C170.0238 (6)0.0172 (6)0.0205 (6)0.0001 (4)−0.0015 (4)−0.0022 (4)
C180.0125 (5)0.0144 (5)0.0137 (5)−0.0016 (4)0.0005 (4)0.0003 (4)
C190.0195 (5)0.0311 (7)0.0110 (5)0.0035 (5)0.0025 (4)−0.0025 (4)
C200.0230 (6)0.0344 (7)0.0138 (5)0.0035 (5)−0.0013 (4)−0.0006 (5)
C210.0226 (6)0.0200 (6)0.0121 (5)0.0006 (4)−0.0001 (4)0.0009 (4)
C220.0161 (5)0.0163 (5)0.0187 (5)0.0035 (4)0.0009 (4)0.0033 (4)
Geometric parameters (Å, º)
Cl1—C31.7387 (12)C9—C101.5169 (15)
O1—C151.2117 (14)C10—C111.5233 (15)
O2—C151.3430 (14)C10—C141.5241 (15)
O2—C161.4467 (14)C10—H10A0.9800
O3—C181.3440 (13)C11—C121.3611 (15)
O3—C191.4519 (14)C11—C181.4625 (15)
O4—C181.2233 (14)C12—C221.4977 (16)
N1—N21.3556 (13)C13—C141.3552 (15)
N1—C71.3628 (15)C13—C211.5042 (16)
N1—H1N10.859 (18)C14—C151.4707 (16)
N2—C81.3313 (15)C16—C171.5060 (17)
N3—C121.3814 (15)C16—H16A0.9700
N3—C131.3888 (15)C16—H16B0.9700
N3—H1N30.909 (19)C17—H17A0.9600
C1—C21.3915 (16)C17—H17B0.9600
C1—C61.4021 (15)C17—H17C0.9600
C1—H1A0.9300C19—C201.5075 (18)
C2—C31.3819 (19)C19—H19A0.9700
C2—H2A0.9300C19—H19B0.9700
C3—C41.3862 (17)C20—H20A0.9600
C4—C51.3940 (16)C20—H20B0.9600
C4—H4A0.9300C20—H20C0.9600
C5—C61.3974 (17)C21—H21A0.9600
C5—H5A0.9300C21—H21B0.9600
C6—C71.4670 (15)C21—H21C0.9600
C7—C91.3965 (14)C22—H22A0.9600
C8—C91.4108 (16)C22—H22B0.9600
C8—H8A0.9300C22—H22C0.9600
C15—O2—C16116.30 (9)C14—C13—N3118.15 (10)
C18—O3—C19116.69 (9)C14—C13—C21128.07 (11)
N2—N1—C7112.89 (9)N3—C13—C21113.78 (10)
N2—N1—H1N1116.7 (12)C13—C14—C15123.77 (10)
C7—N1—H1N1130.0 (12)C13—C14—C10119.60 (10)
C8—N2—N1104.07 (9)C15—C14—C10116.55 (9)
C12—N3—C13121.59 (9)O1—C15—O2122.63 (11)
C12—N3—H1N3118.7 (11)O1—C15—C14124.73 (11)
C13—N3—H1N3117.8 (11)O2—C15—C14112.54 (10)
C2—C1—C6120.24 (11)O2—C16—C17105.52 (10)
C2—C1—H1A119.9O2—C16—H16A110.6
C6—C1—H1A119.9C17—C16—H16A110.6
C3—C2—C1119.54 (11)O2—C16—H16B110.6
C3—C2—H2A120.2C17—C16—H16B110.6
C1—C2—H2A120.2H16A—C16—H16B108.8
C2—C3—C4121.43 (11)C16—C17—H17A109.5
C2—C3—Cl1119.55 (9)C16—C17—H17B109.5
C4—C3—Cl1119.01 (10)H17A—C17—H17B109.5
C3—C4—C5118.96 (12)C16—C17—H17C109.5
C3—C4—H4A120.5H17A—C17—H17C109.5
C5—C4—H4A120.5H17B—C17—H17C109.5
C4—C5—C6120.71 (11)O4—C18—O3122.26 (10)
C4—C5—H5A119.6O4—C18—C11126.36 (10)
C6—C5—H5A119.6O3—C18—C11111.38 (9)
C5—C6—C1119.10 (10)O3—C19—C20106.57 (10)
C5—C6—C7120.83 (10)O3—C19—H19A110.4
C1—C6—C7120.03 (10)C20—C19—H19A110.4
N1—C7—C9106.36 (9)O3—C19—H19B110.4
N1—C7—C6120.39 (10)C20—C19—H19B110.4
C9—C7—C6133.25 (10)H19A—C19—H19B108.6
N2—C8—C9112.86 (10)C19—C20—H20A109.5
N2—C8—H8A123.6C19—C20—H20B109.5
C9—C8—H8A123.6H20A—C20—H20B109.5
C7—C9—C8103.82 (10)C19—C20—H20C109.5
C7—C9—C10131.02 (10)H20A—C20—H20C109.5
C8—C9—C10124.80 (10)H20B—C20—H20C109.5
C9—C10—C11109.34 (9)C13—C21—H21A109.5
C9—C10—C14113.54 (9)C13—C21—H21B109.5
C11—C10—C14107.27 (8)H21A—C21—H21B109.5
C9—C10—H10A108.9C13—C21—H21C109.5
C11—C10—H10A108.9H21A—C21—H21C109.5
C14—C10—H10A108.9H21B—C21—H21C109.5
C12—C11—C18121.40 (10)C12—C22—H22A109.5
C12—C11—C10118.82 (10)C12—C22—H22B109.5
C18—C11—C10119.51 (9)H22A—C22—H22B109.5
C11—C12—N3118.42 (10)C12—C22—H22C109.5
C11—C12—C22127.72 (10)H22A—C22—H22C109.5
N3—C12—C22113.79 (9)H22B—C22—H22C109.5
C7—N1—N2—C80.62 (13)C14—C10—C11—C18146.53 (10)
C6—C1—C2—C3−0.41 (19)C18—C11—C12—N3−172.34 (10)
C1—C2—C3—C4−0.9 (2)C10—C11—C12—N313.70 (15)
C1—C2—C3—Cl1178.92 (10)C18—C11—C12—C2210.73 (18)
C2—C3—C4—C51.7 (2)C10—C11—C12—C22−163.24 (11)
Cl1—C3—C4—C5−178.15 (10)C13—N3—C12—C1119.94 (16)
C3—C4—C5—C6−1.14 (19)C13—N3—C12—C22−162.71 (10)
C4—C5—C6—C1−0.12 (18)C12—N3—C13—C14−22.38 (16)
C4—C5—C6—C7177.48 (11)C12—N3—C13—C21157.22 (10)
C2—C1—C6—C50.91 (18)N3—C13—C14—C15167.42 (10)
C2—C1—C6—C7−176.72 (11)C21—C13—C14—C15−12.11 (19)
N2—N1—C7—C9−0.39 (13)N3—C13—C14—C10−9.08 (16)
N2—N1—C7—C6178.92 (10)C21—C13—C14—C10171.38 (11)
C5—C6—C7—N1−145.13 (11)C9—C10—C14—C13−83.80 (13)
C1—C6—C7—N132.45 (16)C11—C10—C14—C1337.11 (14)
C5—C6—C7—C933.95 (19)C9—C10—C14—C1599.45 (12)
C1—C6—C7—C9−148.47 (13)C11—C10—C14—C15−139.64 (10)
N1—N2—C8—C9−0.62 (13)C16—O2—C15—O13.64 (18)
N1—C7—C9—C80.00 (12)C16—O2—C15—C14−172.93 (10)
C6—C7—C9—C8−179.18 (12)C13—C14—C15—O1162.09 (13)
N1—C7—C9—C10−173.26 (11)C10—C14—C15—O1−21.31 (17)
C6—C7—C9—C107.6 (2)C13—C14—C15—O2−21.42 (16)
N2—C8—C9—C70.40 (13)C10—C14—C15—O2155.18 (10)
N2—C8—C9—C10174.21 (10)C15—O2—C16—C17176.01 (10)
C7—C9—C10—C11116.66 (13)C19—O3—C18—O4−1.74 (17)
C8—C9—C10—C11−55.36 (14)C19—O3—C18—C11178.61 (10)
C7—C9—C10—C14−123.60 (12)C12—C11—C18—O420.74 (18)
C8—C9—C10—C1464.38 (14)C10—C11—C18—O4−165.33 (11)
C9—C10—C11—C1284.14 (12)C12—C11—C18—O3−159.62 (10)
C14—C10—C11—C12−39.39 (13)C10—C11—C18—O314.30 (14)
C9—C10—C11—C18−89.94 (12)C18—O3—C19—C20−178.84 (11)
Hydrogen-bond geometry (Å, º)
Cg1 is the centroid of the N1/N2/C7–C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O4i0.857 (17)2.078 (17)2.9291 (14)172.2 (17)
N3—H1N3···N2ii0.908 (19)2.184 (19)3.0427 (14)157.5 (15)
C5—H5A···O10.932.273.1988 (16)177
C8—H8A···N30.932.613.2546 (15)127
C22—H22B···N2iii0.962.503.3741 (16)151
C19—H19B···Cg1iv0.962.793.5562 (14)137
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+2, −z; (iii) x−1, y, z; (iv) −x, −y+2, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5103).
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Boecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596–1603. [PubMed]
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Buhler, F. R. & Kiowski, W. (1987). J. Hypertens. 5, S3–S10. [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  • Fun, H.-K., Arshad, S., Malladi, S., Shivananda, K. N. & Isloor, A. M. (2012). Acta Cryst. E68, o922–o923. [PMC free article] [PubMed]
  • Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.
  • Janis, R. A. & Triggle, D. J. (1983). J. Med. Chem. 26, 775–785. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859. [PubMed]
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography