PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 April 1; 68(Pt 4): o1023.
Published online 2012 March 10. doi:  10.1107/S1600536812009439
PMCID: PMC3343987

1-[3-(4-Chloro­phen­yl)-5-(4-meth­oxy­phen­yl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone

Abstract

In the title compound, C18H17ClN2O2, the benzene rings form dihedral angles of 6.69 (6) and 74.88 (5)° with the 4,5-dihydro-1H-pyrazole ring. The benzene rings form a dihedral angle of 76.67 (5)° with each other. In the crystal, mol­ecules are linked via bifurcated (C,C)–H(...)O hydrogen bonds into chains along [010]. The crystal structure is further consolidated by C—H(...)π inter­actions.

Related literature  

For general background to and the biological activity of the title compound, see: Samshuddin et al. (2011 [triangle]); Sarojini et al. (2010 [triangle]). For standard bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the the data collection, see: Cosier & Glazer (1986 [triangle]). For a related structure, see: Fun et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-o1023-scheme1.jpg

Experimental  

Crystal data  

  • C18H17ClN2O2
  • M r = 328.79
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-o1023-efi1.jpg
  • a = 9.3473 (4) Å
  • b = 9.4418 (4) Å
  • c = 19.7840 (7) Å
  • β = 113.830 (2)°
  • V = 1597.19 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 100 K
  • 0.39 × 0.25 × 0.17 mm

Data collection  

  • Bruker SMART APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.908, T max = 0.958
  • 21450 measured reflections
  • 5715 independent reflections
  • 4900 reflections with I > 2σ(I)
  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.109
  • S = 1.08
  • 5715 reflections
  • 210 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009439/bv2200sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009439/bv2200Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812009439/bv2200Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC for financial assistance through an SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

supplementary crystallographic information

Comment

Pyrazolines are know for exhibiting biological properties such as antibacterial, antifungal, antioxidant and analgesic activities (Samshuddin et al., 2011; Sarojini et al., 2010). In continuation of our work on synthesis of pyrazoline derivatives (Fun et al., 2010), the title compound (I) is prepared and its crystal structure is reported.

In the title molecule (Fig. 1), the two benzene rings (C1-C6 and C10-C15) form dihedral angles of 6.69 (6) and 74.88 (5)°, respectively, with the 4,5-dihydro-1H-pyrazole ring (N1/N2/C7-C9). The benzene rings form a dihedral angle of 76.67 (5)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with a related structures (Fun et al., 2010).

In the crystal structure, Fig. 2, molecules are linked via intermolecular bifurcated C5–H5A···O2 and C16–H16B···O2 hydrogen bonds (Table 1) into one-dimensional chains along [010]. The crystal structure is further consolidated by C16–H16C···Cg1iii (Table 1) interactions, where Cg1 is the centroid of C10-C15 benzene ring.

Experimental

A mixture of (2E)-1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (2.72 g, 0.01 mol) and hydrazine hydrate (0.5 ml, 0.01 mol) in 25 ml acetic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. The single crystals were grown from dimethylformamide (DMF) by slow evaporation method and yield of the compound was 82% (m.p. : 409 K).

Refinement

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C18H17ClN2O2F(000) = 688
Mr = 328.79Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9967 reflections
a = 9.3473 (4) Åθ = 2.4–32.5°
b = 9.4418 (4) ŵ = 0.25 mm1
c = 19.7840 (7) ÅT = 100 K
β = 113.830 (2)°Block, colourless
V = 1597.19 (11) Å30.39 × 0.25 × 0.17 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer5715 independent reflections
Radiation source: fine-focus sealed tube4900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
[var phi] and ω scansθmax = 32.6°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −14→14
Tmin = 0.908, Tmax = 0.958k = −14→14
21450 measured reflectionsl = −28→30

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0578P)2 + 0.4018P] where P = (Fo2 + 2Fc2)/3
5715 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.39017 (3)0.39544 (3)−0.167559 (12)0.02538 (8)
O10.79766 (9)0.66995 (8)0.45133 (4)0.02433 (16)
O20.91233 (9)0.03965 (8)0.36842 (4)0.02099 (15)
N10.71059 (10)0.14269 (8)0.18233 (4)0.01673 (15)
N20.81942 (10)0.13711 (8)0.25551 (4)0.01686 (15)
C10.52427 (13)0.20907 (12)0.02990 (5)0.02301 (19)
H1A0.48560.13810.05220.028*
C20.44026 (13)0.24407 (12)−0.04388 (5)0.0241 (2)
H2A0.34420.1979−0.07210.029*
C30.49847 (12)0.34738 (10)−0.07580 (5)0.01920 (18)
C40.63933 (13)0.41499 (11)−0.03629 (5)0.02137 (19)
H4A0.67870.4838−0.05940.026*
C50.72232 (12)0.38032 (10)0.03796 (5)0.01943 (18)
H5A0.81820.42690.06590.023*
C60.66539 (11)0.27739 (10)0.07168 (5)0.01637 (16)
C70.75373 (11)0.24300 (9)0.14994 (5)0.01598 (16)
C80.90463 (11)0.31439 (10)0.19905 (5)0.01772 (17)
H8A0.89370.41880.19710.021*
H8B0.99150.28740.18520.021*
C90.93042 (11)0.25651 (9)0.27597 (5)0.01613 (16)
H9A1.04000.22090.30190.019*
C100.89448 (11)0.36484 (10)0.32356 (5)0.01551 (16)
C111.00985 (11)0.46168 (10)0.36358 (5)0.01698 (16)
H11A1.10920.45670.36120.020*
C120.98297 (11)0.56594 (10)0.40712 (5)0.01733 (16)
H12A1.06330.63090.43430.021*
C130.83702 (12)0.57364 (10)0.41030 (5)0.01832 (17)
C140.71987 (12)0.47712 (12)0.37019 (6)0.0233 (2)
H14A0.62030.48220.37230.028*
C150.74886 (12)0.37390 (11)0.32730 (5)0.02067 (18)
H15A0.66870.30880.30020.025*
C160.91421 (13)0.77111 (10)0.49274 (5)0.02186 (19)
H16A0.87610.82700.52380.033*
H16B0.93600.83410.45870.033*
H16C1.01030.72140.52400.033*
C170.81439 (11)0.03714 (10)0.30430 (5)0.01726 (17)
C180.68751 (13)−0.07237 (11)0.27532 (6)0.02370 (19)
H18A0.7054−0.14610.31270.036*
H18B0.6885−0.11490.23030.036*
H18C0.5858−0.02760.26400.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.02990 (14)0.02625 (13)0.01582 (11)−0.00074 (9)0.00491 (9)0.00026 (8)
O10.0228 (4)0.0255 (3)0.0257 (3)−0.0018 (3)0.0108 (3)−0.0105 (3)
O20.0233 (4)0.0204 (3)0.0170 (3)0.0018 (3)0.0058 (3)0.0015 (2)
N10.0169 (4)0.0175 (3)0.0150 (3)0.0008 (3)0.0056 (3)0.0001 (3)
N20.0181 (4)0.0164 (3)0.0146 (3)−0.0012 (3)0.0051 (3)−0.0002 (2)
C10.0202 (5)0.0271 (5)0.0207 (4)−0.0054 (4)0.0071 (4)0.0032 (3)
C20.0200 (5)0.0292 (5)0.0198 (4)−0.0060 (4)0.0047 (4)0.0012 (3)
C30.0215 (5)0.0202 (4)0.0153 (4)0.0008 (3)0.0068 (3)−0.0005 (3)
C40.0254 (5)0.0214 (4)0.0176 (4)−0.0040 (4)0.0090 (4)0.0008 (3)
C50.0201 (4)0.0203 (4)0.0180 (4)−0.0038 (3)0.0078 (3)−0.0005 (3)
C60.0166 (4)0.0176 (4)0.0159 (3)0.0003 (3)0.0076 (3)0.0000 (3)
C70.0157 (4)0.0169 (4)0.0163 (3)0.0006 (3)0.0074 (3)−0.0010 (3)
C80.0177 (4)0.0199 (4)0.0168 (4)−0.0027 (3)0.0083 (3)−0.0015 (3)
C90.0153 (4)0.0161 (4)0.0167 (3)−0.0002 (3)0.0061 (3)−0.0010 (3)
C100.0157 (4)0.0165 (4)0.0135 (3)0.0008 (3)0.0050 (3)0.0006 (3)
C110.0165 (4)0.0173 (4)0.0182 (4)−0.0014 (3)0.0081 (3)0.0002 (3)
C120.0179 (4)0.0164 (4)0.0172 (4)−0.0030 (3)0.0066 (3)−0.0008 (3)
C130.0194 (4)0.0190 (4)0.0165 (4)0.0009 (3)0.0072 (3)−0.0022 (3)
C140.0156 (4)0.0286 (5)0.0261 (4)−0.0016 (4)0.0089 (4)−0.0089 (4)
C150.0150 (4)0.0241 (4)0.0215 (4)−0.0018 (3)0.0058 (3)−0.0068 (3)
C160.0276 (5)0.0175 (4)0.0183 (4)−0.0010 (4)0.0070 (4)−0.0021 (3)
C170.0188 (4)0.0153 (4)0.0185 (4)0.0024 (3)0.0085 (3)0.0005 (3)
C180.0255 (5)0.0211 (4)0.0227 (4)−0.0043 (4)0.0079 (4)0.0014 (3)

Geometric parameters (Å, º)

Cl1—C31.7440 (10)C8—H8A0.9900
O1—C131.3647 (11)C8—H8B0.9900
O1—C161.4314 (12)C9—C101.5171 (12)
O2—C171.2286 (11)C9—H9A1.0000
N1—C71.2957 (12)C10—C111.3913 (13)
N1—N21.3942 (11)C10—C151.3952 (13)
N2—C171.3644 (12)C11—C121.3962 (13)
N2—C91.4738 (12)C11—H11A0.9500
C1—C21.3894 (14)C12—C131.3927 (14)
C1—C61.3994 (14)C12—H12A0.9500
C1—H1A0.9500C13—C141.3990 (14)
C2—C31.3870 (14)C14—C151.3890 (13)
C2—H2A0.9500C14—H14A0.9500
C3—C41.3857 (14)C15—H15A0.9500
C4—C51.3951 (13)C16—H16A0.9800
C4—H4A0.9500C16—H16B0.9800
C5—C61.3998 (13)C16—H16C0.9800
C5—H5A0.9500C17—C181.5017 (14)
C6—C71.4668 (12)C18—H18A0.9800
C7—C81.5102 (13)C18—H18B0.9800
C8—C91.5414 (12)C18—H18C0.9800
C13—O1—C16117.34 (8)C10—C9—H9A110.2
C7—N1—N2107.39 (8)C8—C9—H9A110.2
C17—N2—N1122.80 (8)C11—C10—C15118.56 (8)
C17—N2—C9123.82 (8)C11—C10—C9118.76 (8)
N1—N2—C9113.18 (7)C15—C10—C9122.66 (8)
C2—C1—C6120.58 (9)C10—C11—C12121.53 (9)
C2—C1—H1A119.7C10—C11—H11A119.2
C6—C1—H1A119.7C12—C11—H11A119.2
C3—C2—C1119.10 (9)C13—C12—C11119.24 (8)
C3—C2—H2A120.4C13—C12—H12A120.4
C1—C2—H2A120.4C11—C12—H12A120.4
C4—C3—C2121.69 (9)O1—C13—C12124.47 (9)
C4—C3—Cl1119.14 (7)O1—C13—C14115.73 (9)
C2—C3—Cl1119.17 (8)C12—C13—C14119.79 (9)
C3—C4—C5118.89 (9)C15—C14—C13120.16 (9)
C3—C4—H4A120.6C15—C14—H14A119.9
C5—C4—H4A120.6C13—C14—H14A119.9
C4—C5—C6120.53 (9)C14—C15—C10120.71 (9)
C4—C5—H5A119.7C14—C15—H15A119.6
C6—C5—H5A119.7C10—C15—H15A119.6
C1—C6—C5119.19 (8)O1—C16—H16A109.5
C1—C6—C7121.05 (8)O1—C16—H16B109.5
C5—C6—C7119.77 (8)H16A—C16—H16B109.5
N1—C7—C6121.93 (8)O1—C16—H16C109.5
N1—C7—C8113.87 (8)H16A—C16—H16C109.5
C6—C7—C8124.15 (8)H16B—C16—H16C109.5
C7—C8—C9102.11 (7)O2—C17—N2119.53 (9)
C7—C8—H8A111.3O2—C17—C18123.48 (9)
C9—C8—H8A111.3N2—C17—C18116.99 (8)
C7—C8—H8B111.3C17—C18—H18A109.5
C9—C8—H8B111.3C17—C18—H18B109.5
H8A—C8—H8B109.2H18A—C18—H18B109.5
N2—C9—C10112.23 (8)C17—C18—H18C109.5
N2—C9—C8100.85 (7)H18A—C18—H18C109.5
C10—C9—C8112.84 (7)H18B—C18—H18C109.5
N2—C9—H9A110.2
C7—N1—N2—C17−175.94 (8)N1—N2—C9—C8−15.47 (9)
C7—N1—N2—C99.10 (10)C7—C8—C9—N214.77 (9)
C6—C1—C2—C30.28 (17)C7—C8—C9—C10−105.14 (8)
C1—C2—C3—C40.99 (16)N2—C9—C10—C11162.70 (8)
C1—C2—C3—Cl1−177.99 (8)C8—C9—C10—C11−84.18 (10)
C2—C3—C4—C5−1.61 (16)N2—C9—C10—C15−19.12 (12)
Cl1—C3—C4—C5177.37 (8)C8—C9—C10—C1594.01 (11)
C3—C4—C5—C60.97 (15)C15—C10—C11—C120.32 (14)
C2—C1—C6—C5−0.89 (16)C9—C10—C11—C12178.58 (8)
C2—C1—C6—C7178.96 (10)C10—C11—C12—C13−0.32 (14)
C4—C5—C6—C10.25 (15)C16—O1—C13—C121.13 (14)
C4—C5—C6—C7−179.59 (9)C16—O1—C13—C14−179.58 (9)
N2—N1—C7—C6179.53 (8)C11—C12—C13—O1179.42 (9)
N2—N1—C7—C82.14 (10)C11—C12—C13—C140.16 (14)
C1—C6—C7—N14.38 (14)O1—C13—C14—C15−179.34 (9)
C5—C6—C7—N1−175.78 (9)C12—C13—C14—C15−0.01 (16)
C1—C6—C7—C8−178.50 (9)C13—C14—C15—C100.02 (16)
C5—C6—C7—C81.34 (14)C11—C10—C15—C14−0.17 (15)
N1—C7—C8—C9−11.45 (10)C9—C10—C15—C14−178.36 (9)
C6—C7—C8—C9171.22 (8)N1—N2—C17—O2−178.73 (8)
C17—N2—C9—C10−70.02 (11)C9—N2—C17—O2−4.31 (14)
N1—N2—C9—C10104.88 (8)N1—N2—C17—C181.89 (13)
C17—N2—C9—C8169.63 (9)C9—N2—C17—C18176.31 (8)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of C10–C15 benzene ring.

D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.952.553.4993 (14)174
C16—H16B···O2ii0.982.593.5275 (12)161
C16—H16C···Cg1iii0.982.693.5333 (10)145

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2200).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2009). APEX2, SAINT and SADABSBruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  • Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583. [PMC free article] [PubMed]
  • Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2011). Med. Chem. Res.doi:10.1007/s00044-011-9735-9.
  • Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug Des. Discov. 7, 214–224.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography