PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 April 1; 68(Pt 4): o992–o993.
Published online 2012 March 10. doi:  10.1107/S1600536812009208
PMCID: PMC3343962

4-[3,4-Dimethyl-1-(4-methyl­phen­yl)-5-oxo-4,5-dihydro-1H-pyrazol-4-yl]-3,4-dimethyl-1-(4-methyl­phen­yl)-4,5-dihydro-1H-pyrazol-5-one

Abstract

In the title compound, C24H26N4O2, the complete mol­ecule is generated by the application of twofold symmetry. The pyrazole ring is approximately planar [r.m.s. deviation = 0.026 Å] and the benzene ring is twisted out of this plane [dihedral angle = 21.94 (7)°]. A twist in the mol­ecule about the central C—C bond [1.566 (3) Å] is also evident [C—C—C—C torsion angle = 44.30 (14)°]. Supra­molecular layers in the bc plane are formed in the crystal packing via C—H(...)O and C—H(...)π inter­actions.

Related literature  

For the therapeutic importance of pyrazole compounds, see: Sil et al. (2005 [triangle]); Haddad et al. (2004 [triangle]). For the diverse pharmacological activities of pyrazole compounds, see: Bekhit et al. (2010 [triangle], 2012 [triangle]); Higashi et al. (2006 [triangle]). For synthetic background, see: Nef (1891 [triangle]): Veibel & Westöö (1953 [triangle]); Katritzky et al. (1997 [triangle]); Wardell et al. (2007 [triangle]); de Lima et al. (2010 [triangle]). For the synthesis of the title compound, see: Bernstein et al. (1947 [triangle]); Gryazeva & Golomolzin (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-0o992-scheme1.jpg

Experimental  

Crystal data  

  • C24H26N4O2
  • M r = 402.50
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-0o992-efi2.jpg
  • a = 23.0007 (8) Å
  • b = 6.6712 (2) Å
  • c = 13.5967 (5) Å
  • β = 92.566 (2)°
  • V = 2084.22 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 120 K
  • 0.48 × 0.36 × 0.18 mm

Data collection  

  • Rigaku Saturn724+ diffractometer
  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011 [triangle]) T min = 0.668, T max = 0.746
  • 11383 measured reflections
  • 2384 independent reflections
  • 1856 reflections with I > 2σ(I)
  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.136
  • S = 0.83
  • 2384 reflections
  • 139 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear-SM Expert (Rigaku, 2011 [triangle]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009208/hg5185sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009208/hg5185Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812009208/hg5185Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.

supplementary crystallographic information

Comment

Pyrazoles are key structures in numerous compounds of therapeutic importance (Sil et al., 2005, Haddad et al., 2004). Compounds containing this ring system are known to display diverse pharmacological activities, for example as anti-malarial agents (Bekhit et al., 2012), anti-inflammatory agents (Bekhit et al., 2010), and against cardiovascular disease (Higashi et al., 2006). A general route to pyrazole derivatives involves reaction of an arylhydrazine, ArNHNH2, with a β-dicarbonyl compound, R'COCH2COY. This reaction provides initially a hydrazone derivative, RNHN=CR'CH2COY, which can be isolated but which readily undergoes cyclization to a pyrazone derivative (Nef, 1891; Katritzky et al., 1997; Wardell et al., 2007; de Lima et al., 2010). However, in some cases (Veibel & Westöö, 1953), a dimeric oxidation product is isolated, as found in the reaction between 4-MeC6H4NHNH2 and MeCOCH2CO2Et. The structure of this product, 4-[3,4-dimethyl-1-(4-methylphenyl)-5-oxopyrazol-4- yl]-4,5-dimethyl-2-(4-methylphenyl)pyrazol-3-one (I), is now reported.

The molecule of (I), Fig. 1, has crystallographically imposed twofold symmetry. The pyrazole ring is planar with a r.m.s. deviation for the fitted atoms of 0.026 Å; the maximum deviations from this plane are 0.019 (1) Å (for the N1 and C2 atoms) and -0.023 (1) Å (C3). The benzene ring is inclined to this plane forming a dihedral angle of 21.94 (7)°. There is a twist in the molecule about the central C—C bond [1.566 (3) Å] with the C1—C2—C2i—C1i torsion angle being 44.30 (14)°; symmetry operation i: -x, y, 3/2 - z. The dihedral angle between the pyrazole rings is 61.78 (4)°.

In the crystal packing, supramolecular layers in the bc plane are formed by C—H···O and C—H···π interactions, Fig. 2 and Table 1. These stack along the a axis with no specific intermolecular interactions between them, Fig. 3.

Experimental

A solution of 4-MeC6H4NHNH2.HCl (2 mmol) and MeCOCH2CO2Et (2 mmol) in EtOH (2 0 ml) was refluxed for 2 h. The reaction was left to slowly evaporate in air. Crystals were collected after a week, M.pt: > 573 K; lit. M.pt: >573 K (Bernstein et al., 1947; Gryazeva & Golomolzin, 2003). IR ν: 3391, 3084, 3041, 3012, 2974, 2920, 2858, 1706, 1663, 1614, 1511, 1441, 1390, 1363, 1288, 1140, 1083, 1004, 912, 816, 776, 654, 590, 507, 485 cm-1.

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). Owing to poor agreement two reflections, i.e. (5 1 2) and (2 0 2), were omitted from the final cycles of refinement.

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Unlabelled atoms are related by the symmetry operation -x, y, 3/2 - z.
Fig. 2.
A view of the supramolecular layer in the bc plane of (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively. Hydrogen atoms not involved ...
Fig. 3.
A view in projection down the b axis of the stacking of supramolecular layers along the a direction in (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed ...

Crystal data

C24H26N4O2F(000) = 856
Mr = 402.50Dx = 1.283 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6506 reflections
a = 23.0007 (8) Åθ = 2.9–27.5°
b = 6.6712 (2) ŵ = 0.08 mm1
c = 13.5967 (5) ÅT = 120 K
β = 92.566 (2)°Block, light-yellow
V = 2084.22 (12) Å30.48 × 0.36 × 0.18 mm
Z = 4

Data collection

Rigaku Saturn724+ diffractometer2384 independent reflections
Radiation source: Rotating Anode1856 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.042
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.0°
profile data from ω–scansh = −29→29
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011)k = −8→8
Tmin = 0.668, Tmax = 0.746l = −17→17
11383 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.83w = 1/[σ2(Fo2) + (0.104P)2 + 1.4411P] where P = (Fo2 + 2Fc2)/3
2384 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.06343 (4)0.52970 (14)0.91141 (7)0.0292 (3)
N10.10162 (5)0.23866 (16)0.84739 (8)0.0202 (3)
N20.09381 (5)0.12079 (17)0.76120 (8)0.0217 (3)
C10.05610 (5)0.2093 (2)0.70361 (9)0.0194 (3)
C20.03383 (5)0.40353 (18)0.74559 (9)0.0197 (3)
C30.06614 (6)0.40447 (19)0.84662 (9)0.0205 (3)
C40.03921 (6)0.1236 (2)0.60511 (9)0.0253 (3)
H4A0.06580.01440.59000.038*
H4B0.04130.22840.55490.038*
H4C−0.00060.07180.60570.038*
C50.05690 (7)0.5851 (2)0.68862 (11)0.0310 (3)
H5A0.09930.57530.68560.046*
H5B0.04680.70920.72240.046*
H5C0.03920.58610.62170.046*
C60.13732 (5)0.1626 (2)0.92676 (9)0.0198 (3)
C70.15049 (6)−0.0403 (2)0.93131 (10)0.0245 (3)
H70.1366−0.12850.88070.029*
C80.18434 (6)−0.1132 (2)1.01097 (10)0.0271 (3)
H80.1931−0.25231.01400.033*
C90.20565 (6)0.0114 (2)1.08617 (9)0.0258 (3)
C100.19226 (6)0.2144 (2)1.07910 (10)0.0282 (3)
H100.20650.30281.12940.034*
C110.15862 (6)0.2913 (2)1.00071 (10)0.0253 (3)
H110.15020.43060.99740.030*
C120.24118 (7)−0.0698 (3)1.17294 (10)0.0350 (4)
H12A0.2499−0.21161.16180.052*
H12B0.2191−0.05641.23260.052*
H12C0.27760.00571.18090.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0374 (6)0.0238 (5)0.0256 (5)0.0034 (4)−0.0081 (4)−0.0085 (4)
N10.0224 (6)0.0217 (5)0.0161 (5)0.0010 (4)−0.0031 (4)−0.0038 (4)
N20.0221 (6)0.0267 (6)0.0163 (5)0.0006 (4)−0.0001 (4)−0.0047 (4)
C10.0198 (6)0.0233 (6)0.0153 (6)−0.0011 (5)0.0025 (5)−0.0007 (5)
C20.0227 (7)0.0197 (6)0.0163 (6)−0.0015 (5)−0.0021 (5)0.0008 (5)
C30.0217 (6)0.0210 (6)0.0184 (6)−0.0028 (5)−0.0010 (5)−0.0002 (5)
C40.0276 (7)0.0312 (7)0.0170 (6)0.0030 (6)0.0002 (5)−0.0037 (5)
C50.0361 (8)0.0295 (8)0.0269 (7)−0.0107 (6)−0.0036 (6)0.0081 (6)
C60.0166 (6)0.0260 (7)0.0167 (6)−0.0003 (5)0.0004 (5)0.0003 (5)
C70.0237 (7)0.0250 (7)0.0242 (7)−0.0012 (5)−0.0036 (5)−0.0025 (5)
C80.0257 (7)0.0262 (7)0.0290 (7)0.0027 (6)−0.0025 (6)0.0026 (5)
C90.0220 (7)0.0363 (8)0.0191 (6)0.0025 (6)0.0005 (5)0.0023 (5)
C100.0266 (7)0.0350 (8)0.0224 (7)0.0018 (6)−0.0051 (6)−0.0068 (6)
C110.0270 (7)0.0254 (7)0.0232 (7)0.0002 (6)−0.0037 (5)−0.0033 (5)
C120.0338 (8)0.0464 (9)0.0242 (7)0.0091 (7)−0.0054 (6)0.0028 (6)

Geometric parameters (Å, º)

O1—C31.2177 (15)C5—H5C0.9800
N1—C31.3743 (17)C6—C71.3882 (19)
N1—N21.4160 (14)C6—C111.3943 (18)
N1—C61.4202 (16)C7—C81.3928 (18)
N2—C11.2859 (17)C7—H70.9500
C1—C41.4917 (17)C8—C91.390 (2)
C1—C21.5142 (17)C8—H80.9500
C2—C31.5323 (17)C9—C101.391 (2)
C2—C51.5446 (18)C9—C121.5057 (19)
C2—C2i1.566 (3)C10—C111.3873 (19)
C4—H4A0.9800C10—H100.9500
C4—H4B0.9800C11—H110.9500
C4—H4C0.9800C12—H12A0.9800
C5—H5A0.9800C12—H12B0.9800
C5—H5B0.9800C12—H12C0.9800
C3—N1—N2112.79 (10)H5A—C5—H5C109.5
C3—N1—C6128.04 (11)H5B—C5—H5C109.5
N2—N1—C6118.56 (10)C7—C6—C11119.98 (12)
C1—N2—N1107.82 (10)C7—C6—N1119.99 (12)
N2—C1—C4120.81 (12)C11—C6—N1120.03 (12)
N2—C1—C2113.19 (11)C6—C7—C8119.23 (13)
C4—C1—C2125.98 (11)C6—C7—H7120.4
C1—C2—C3100.53 (10)C8—C7—H7120.4
C1—C2—C5110.64 (10)C9—C8—C7121.98 (13)
C3—C2—C5106.41 (10)C9—C8—H8119.0
C1—C2—C2i112.51 (8)C7—C8—H8119.0
C3—C2—C2i112.02 (12)C8—C9—C10117.50 (13)
C5—C2—C2i113.78 (9)C8—C9—C12121.48 (14)
O1—C3—N1126.61 (12)C10—C9—C12121.02 (13)
O1—C3—C2127.80 (12)C11—C10—C9121.84 (13)
N1—C3—C2105.52 (10)C11—C10—H10119.1
C1—C4—H4A109.5C9—C10—H10119.1
C1—C4—H4B109.5C10—C11—C6119.47 (13)
H4A—C4—H4B109.5C10—C11—H11120.3
C1—C4—H4C109.5C6—C11—H11120.3
H4A—C4—H4C109.5C9—C12—H12A109.5
H4B—C4—H4C109.5C9—C12—H12B109.5
C2—C5—H5A109.5H12A—C12—H12B109.5
C2—C5—H5B109.5C9—C12—H12C109.5
H5A—C5—H5B109.5H12A—C12—H12C109.5
C2—C5—H5C109.5H12B—C12—H12C109.5
C3—N1—N2—C12.35 (15)C1—C2—C3—N13.64 (12)
C6—N1—N2—C1174.14 (10)C5—C2—C3—N1−111.74 (12)
N1—N2—C1—C4178.79 (11)C2i—C2—C3—N1123.33 (8)
N1—N2—C1—C20.36 (14)C3—N1—C6—C7152.61 (13)
N2—C1—C2—C3−2.51 (13)N2—N1—C6—C7−17.78 (17)
C4—C1—C2—C3179.15 (12)C3—N1—C6—C11−26.66 (19)
N2—C1—C2—C5109.65 (13)N2—N1—C6—C11162.95 (11)
C4—C1—C2—C5−68.69 (16)C11—C6—C7—C80.90 (19)
N2—C1—C2—C2i−121.85 (13)N1—C6—C7—C8−178.37 (11)
C4—C1—C2—C2i59.82 (17)C6—C7—C8—C9−0.3 (2)
N2—N1—C3—O1179.21 (12)C7—C8—C9—C10−0.4 (2)
C6—N1—C3—O18.4 (2)C7—C8—C9—C12178.74 (12)
N2—N1—C3—C2−3.87 (13)C8—C9—C10—C110.4 (2)
C6—N1—C3—C2−174.71 (11)C12—C9—C10—C11−178.70 (13)
C1—C2—C3—O1−179.48 (13)C9—C10—C11—C60.2 (2)
C5—C2—C3—O165.14 (17)C7—C6—C11—C10−0.9 (2)
C2i—C2—C3—O1−59.80 (14)N1—C6—C11—C10178.41 (11)

Symmetry code: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C6–C11 ring.

D—H···AD—HH···AD···AD—H···A
C4—H4B···O1ii0.982.603.5676 (16)169
C4—H4A···Cg1iii0.982.823.6644 (15)145

Symmetry codes: (ii) x, −y+1, z−1/2; (iii) −x+1/2, y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5185).

References

  • Bekhit, A. A., Hymete, A., Asfaw, H., Bekhit, A. & El-D, A. (2012). Arch. Pharm. 345, 147–154. [PubMed]
  • Bekhit, A. A., Hymete, A., Bekhit, A., El-D, A., Damtew, A. & Aboul-Enein, H. Y. (2010). Mini Rev. Med. Chem. 10, 1014–1033. [PubMed]
  • Bernstein, J., Stearns, B., Dexter, M. & Lott, W. A. (1947). J. Am. Chem. Soc. 69, 1147–1150. [PubMed]
  • Brandenburg, K. (2006). DIAMONDCrystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Gryazeva, O. V. & Golomolzin, B. V. (2003). Chem. Heterocycl. Compd, 39, 1478–1486.
  • Haddad, N., Salvango, A. & Busacca, C. (2004). Tetrahedron Lett. 45, 5935–5937.
  • Higashi, Y., Jitsuili, D., Chayama, K. & Yoshizumi, M. (2006). Rec. Pat. Cardiovasc. Drug Dis., 1, 85–93. [PubMed]
  • Katritzky, A. R., Barczynski, P. & Ostercamp, D. L. (1997). J. Chem. Soc. Perkin Trans IIpp. 969–975.
  • Lima, G. M. de, Wardell, J. L. & Wardell, S. M. S. V. (2010). J. Chem. Crystallogr. 40, 213–221.
  • Nef, J. U. (1891). Justus Liebigs Ann. Chem. 266, 62.
  • Rigaku (2011). CrystalClear-SM ExpertRigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sil, D., Kumar, R., Sharon, A., Maulik, P. R. & Rama, V. J. (2005). Tetrahedron Lett. 46, 3807–3809.
  • Veibel, S. & Westöö, G. (1953). Acta Chem. Scand. 7, 119–127.
  • Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o462–o467. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography