PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 April 1; 68(Pt 4): m396–m397.
Published online 2012 March 10. doi:  10.1107/S160053681200983X
PMCID: PMC3343808

Tris(ethyl­enediamine-κ2 N,N′)cadmium hexa­fluoridogermanate

Abstract

In the title compound, [Cd(C2H8N2)3](GeF6), the CdII atom, lying on a 32 symmetry site, is coordinated by six N atoms from three ethyl­enediamine (en) ligands in a distorted octa­hedral geometry. The Ge atom also lies on a 32 symmetry site and is coordinated by six F atoms. The en ligand has a twofold rotation axis passing through the mid-point of the C—C bond. The F atom is disordered over two sites with equal occupancy factors. In the crystal, the [Cd(en)3]2+ cations and [GeF6]2− anions are connected through N—H(...)F hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature  

For background to the structures and applications of microporous materials, see: Cheetham et al. (1999 [triangle]); Jiang et al. (2010 [triangle]); Liang et al. (2006 [triangle]); Yu & Xu (2003 [triangle]); Zou et al. (2005 [triangle]). For related fluorides, see: Brauer et al. (1980 [triangle], 1986 [triangle]); Dadachov et al. (2001 [triangle]); Lukevics et al. (1997 [triangle]); Tang et al. (2001a [triangle],b [triangle],c [triangle],d [triangle],e [triangle],f [triangle]); Wang et al. (2004 [triangle]); Wang & Wang (2011 [triangle]); Zhang et al. (2003 [triangle]). For related structures containing chiral metal complexes, see: Stalder & Wilkinson (1997 [triangle]); Wang et al. (2003 [triangle]); Yu et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-0m396-scheme1.jpg

Experimental  

Crystal data  

  • [Cd(C2H8N2)3](GeF6)
  • M r = 479.33
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-68-0m396-efi4.jpg
  • a = 9.5422 (3) Å
  • c = 9.9977 (5) Å
  • V = 788.37 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.32 mm−1
  • T = 293 K
  • 0.20 × 0.18 × 0.12 mm

Data collection  

  • Bruker APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.557, T max = 0.692
  • 7348 measured reflections
  • 549 independent reflections
  • 496 reflections with I > 2σ(I)
  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.038
  • S = 1.16
  • 549 reflections
  • 42 parameters
  • 12 restraints
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681200983X/hy2520sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200983X/hy2520Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20901043), the Young Scientist Foundation of Shandong Province (No. BS2009CL041) and the Qingdao University Research Fund (No. 063–06300522).

supplementary crystallographic information

Comment

In recent years, there has been much interest in the design and synthesis of crystalline microporous materials because of their rich structural chemistry and potential applications in catalysis, ion-exchange and separation (Cheetham et al., 1999; Jiang et al., 2010; Liang et al., 2006; Yu & Xu, 2003; Zou et al., 2005). In addition to the most notable zeolites, many non-aluminosilicate-based microporous systems, such as metal phosphates, germanates, borates, etc. have been extensively investigated. In contrast, the progress in the field of fluorides has been limited, though some fluoroaluminates (Tang et al., 2001c,e), fluorosilicate (Tang et al., 2001f), fluorotitanates (Dadachov et al., 2001; Tang et al., 2001a,b,d) and fluorogermanates (Brauer et al., 1980,1986; Lukevics et al., 1997; Wang et al., 2004; Wang & Wang, 2011; Zhang et al., 2003) have been reported. The main purpose of our work is to prepare microporous germanates templated by transition-metal complexes. Unexpectedly, the title compound, (I), was obtained, which is a new fluorogermanate templated by [Cd(en)3]2+ cations (en = ethylenediamine).

The crystal structure of (I) consists of discrete [Cd(en)3]2+ cations and [GeF6]2- anions (Fig. 1). Both of the cation and anion lie on 32 symmetry sites. In the [GeF6]2- anion, the Ge atom is six-coordinated in a distorted octahedral geometry by six symmetry-related F atoms. The Ge—F bond distances are 1.812 (9) and 1.746 (9) Å, similar to the distances observed in inorganic complex K2GeF6 (Ge—F 1.77 Å) and in other fluorogermanates. In the [Cd(en)3]2+ cation, the CdII atom is bonded to six amine N aoms from three symmetry-related en ligands. The Cd—N bond distance is 2.370 (2) Å, comparable with those found in other related compounds. Interestingly, the [Cd(en)3]2+ complex generated in situ is chiral, and the enantiomers are alternately arranged along the a axis (Fig. 2). It is worthy to note that the rigid octahedrally coordinated metal amine complex with chiral features is particularly rare and usually characterized as Co and Ir complexes, such as [Co(en)3]3+, [Co(tn)3]3+ (tn = 1,3-diaminopropane), [Co(dien)2]3+ (dien = diethylenetriamine), [Ir(en)3]3+, etc (Stalder & Wilkinson, 1997; Wang et al., 2003; Yu et al., 2001). Each [Cd(en)3]2+ cation is linked to three neighboring [GeF6]2- anions through N1—H1D···F1 hydrogen bonds (Table 1), generating a hydrogen-bonded layer along [001] (Fig. 3). Adjacent layers are further connected with each other through N1—H1C···F1 hydrogen bonds (Fig. 4), giving rise to a three-dimensional supramolecular network .

Experimental

The title compound was obtained by hydrothermal methods. Typically, a mixture of GeO2 (0.104 g, 1 mmol), CdCO3 (0.174 g, 1 mmol), en (1.34 ml), pyridine (2.50 ml), hydrofluoric acid (40%, 0.20 ml) and H2O (1.00 ml) in a molar ratio of 1:1:20:31:10:56 was sealed in a 25 ml Teflon-lined steel autoclave and heated under autogenous pressure at 443 K for 7 days. The block crystals obtained were recovered by filtration, washed with distilled water and dried in air.

Refinement

Atom F1 was refined as disordered over two positions, each with 50% site occupancy. All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 and N—H = 0.90 Å and with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x + y, y, 1/2 - z; (ii) x, 1 + x - y, 1/2 - z; (iii) -x + y, 1 - x, z; (iv) 1 - y, 1 + x - y, z; (v) 1 - y, 1 - x, 1/2 - z.]
Fig. 2.
The arrangement of the chiral [Cd(en)3]2+ complexes along the a axis.
Fig. 3.
View of the hydrogen-bonded layer from the [Cd(en)3]2+ and [GeF6]2- ions.
Fig. 4.
The expansion of adjacent layers into a three-dimensional hydrogen-bonded network.

Crystal data

[Cd(C2H8N2)3](GeF6)Dx = 2.019 Mg m3
Mr = 479.33Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 549 reflections
Hall symbol: -P 3 2cθ = 4.1–26.5°
a = 9.5422 (3) ŵ = 3.32 mm1
c = 9.9977 (5) ÅT = 293 K
V = 788.37 (7) Å3Block, colorless
Z = 20.20 × 0.18 × 0.12 mm
F(000) = 472

Data collection

Bruker APEX CCD diffractometer549 independent reflections
Radiation source: fine-focus sealed tube496 reflections with I > 2σa(I)
Graphite monochromatorRint = 0.038
[var phi] and ω scansθmax = 26.5°, θmin = 4.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.557, Tmax = 0.692k = −11→11
7348 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.038w = 1/[σ2(Fo2) + (0.0048P)2 + 0.9629P] where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
549 reflectionsΔρmax = 0.23 e Å3
42 parametersΔρmin = −0.23 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cd10.33330.66670.25000.03249 (17)
Ge10.66670.33330.25000.02960 (19)
N10.2829 (3)0.4387 (3)0.1196 (2)0.0444 (6)
H1C0.26370.45380.03410.053*
H1D0.36980.42540.12120.053*
C10.1425 (4)0.2956 (4)0.1743 (3)0.0504 (8)
H1A0.13810.19890.13880.060*
H1B0.04430.29490.14790.060*
F10.5391 (11)0.3708 (8)0.1387 (10)0.065 (2)0.50
F1'0.5004 (11)0.2974 (8)0.1521 (10)0.064 (2)0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0326 (2)0.0326 (2)0.0323 (3)0.01630 (10)0.0000.000
Ge10.0312 (3)0.0312 (3)0.0264 (4)0.01559 (13)0.0000.000
N10.0559 (17)0.0475 (16)0.0364 (13)0.0309 (14)−0.0008 (12)−0.0037 (12)
C10.056 (2)0.0397 (18)0.0518 (18)0.0214 (16)−0.0092 (16)−0.0112 (14)
F10.074 (5)0.092 (5)0.051 (3)0.058 (4)−0.012 (3)0.001 (4)
F1'0.049 (4)0.098 (5)0.049 (3)0.040 (4)−0.021 (3)−0.010 (4)

Geometric parameters (Å, º)

Cd1—N1i2.370 (2)Ge1—F1vi1.812 (9)
Cd1—N1ii2.370 (2)Ge1—F1viii1.812 (9)
Cd1—N1iii2.370 (2)Ge1—F1ix1.812 (9)
Cd1—N12.370 (2)Ge1—F1v1.812 (9)
Cd1—N1iv2.370 (2)Ge1—F11.812 (9)
Cd1—N1v2.370 (2)N1—C11.459 (4)
Ge1—F1'vi1.746 (9)N1—H1C0.9000
Ge1—F1'vii1.746 (9)N1—H1D0.9000
Ge1—F1'viii1.746 (9)C1—C1iii1.518 (6)
Ge1—F1'v1.746 (9)C1—H1A0.9700
Ge1—F1'ix1.746 (9)C1—H1B0.9700
Ge1—F1'1.746 (9)F1—F1'0.621 (10)
Ge1—F1vii1.812 (9)
N1i—Cd1—N1ii74.72 (12)F1'ix—Ge1—F1viii176.1 (7)
N1i—Cd1—N1iii92.62 (8)F1'—Ge1—F1viii91.4 (3)
N1ii—Cd1—N1iii103.54 (12)F1vii—Ge1—F1viii86.2 (5)
N1i—Cd1—N1159.72 (12)F1vi—Ge1—F1viii82.4 (6)
N1ii—Cd1—N192.62 (8)F1'vi—Ge1—F1ix73.7 (3)
N1iii—Cd1—N174.72 (12)F1'vii—Ge1—F1ix90.6 (2)
N1i—Cd1—N1iv103.54 (12)F1'viii—Ge1—F1ix176.1 (7)
N1ii—Cd1—N1iv92.62 (8)F1'v—Ge1—F1ix91.4 (3)
N1iii—Cd1—N1iv159.72 (12)F1'—Ge1—F1ix100.8 (2)
N1—Cd1—N1iv92.62 (8)F1vii—Ge1—F1ix82.4 (6)
N1i—Cd1—N1v92.62 (8)F1vi—Ge1—F1ix86.2 (5)
N1ii—Cd1—N1v159.72 (12)F1viii—Ge1—F1ix160.3 (5)
N1iii—Cd1—N1v92.62 (8)F1'vi—Ge1—F1v176.1 (7)
N1—Cd1—N1v103.54 (12)F1'vii—Ge1—F1v100.8 (2)
N1iv—Cd1—N1v74.72 (12)F1'viii—Ge1—F1v73.7 (3)
F1'vi—Ge1—F1'vii76.2 (6)F1'ix—Ge1—F1v91.4 (3)
F1'vi—Ge1—F1'viii103.8 (6)F1'—Ge1—F1v90.6 (2)
F1'vii—Ge1—F1'viii91.7 (5)F1vii—Ge1—F1v86.2 (5)
F1'vi—Ge1—F1'v160.4 (5)F1vi—Ge1—F1v160.3 (5)
F1'vii—Ge1—F1'v91.7 (5)F1viii—Ge1—F1v86.2 (5)
F1'viii—Ge1—F1'v91.7 (5)F1ix—Ge1—F1v108.8 (5)
F1'vi—Ge1—F1'ix91.7 (5)F1'vi—Ge1—F1100.8 (2)
F1'vii—Ge1—F1'ix103.8 (6)F1'vii—Ge1—F1176.1 (7)
F1'viii—Ge1—F1'ix160.4 (5)F1'viii—Ge1—F191.4 (3)
F1'v—Ge1—F1'ix76.2 (6)F1'v—Ge1—F190.6 (2)
F1'vi—Ge1—F1'91.7 (5)F1'ix—Ge1—F173.7 (3)
F1'vii—Ge1—F1'160.4 (5)F1vii—Ge1—F1160.3 (5)
F1'viii—Ge1—F1'76.2 (6)F1vi—Ge1—F186.2 (5)
F1'v—Ge1—F1'103.8 (6)F1viii—Ge1—F1108.8 (5)
F1'ix—Ge1—F1'91.7 (5)F1ix—Ge1—F186.2 (5)
F1'vi—Ge1—F1vii91.4 (3)F1v—Ge1—F182.4 (6)
F1'viii—Ge1—F1vii100.8 (2)C1—N1—Cd1108.83 (17)
F1'v—Ge1—F1vii73.7 (3)C1—N1—H1C109.9
F1'ix—Ge1—F1vii90.6 (2)Cd1—N1—H1C109.9
F1'—Ge1—F1vii176.1 (7)C1—N1—H1D109.9
F1'vii—Ge1—F1vi91.4 (3)Cd1—N1—H1D109.9
F1'viii—Ge1—F1vi90.6 (2)H1C—N1—H1D108.3
F1'v—Ge1—F1vi176.1 (7)N1—C1—C1iii110.1 (2)
F1'ix—Ge1—F1vi100.8 (2)N1—C1—H1A109.6
F1'—Ge1—F1vi73.7 (3)C1iii—C1—H1A109.6
F1vii—Ge1—F1vi108.8 (5)N1—C1—H1B109.6
F1'vi—Ge1—F1viii90.6 (2)C1iii—C1—H1B109.6
F1'vii—Ge1—F1viii73.7 (3)H1A—C1—H1B108.2
F1'v—Ge1—F1viii100.8 (2)

Symmetry codes: (i) x, xy+1, −z+1/2; (ii) −x+y, −x+1, z; (iii) −x+y, y, −z+1/2; (iv) −y+1, xy+1, z; (v) −y+1, −x+1, −z+1/2; (vi) −y+1, xy, z; (vii) −x+y+1, y, −z+1/2; (viii) x, xy, −z+1/2; (ix) −x+y+1, −x+1, z.

Hydrogen-bond geometry (Å, º)

D—H···AD—HH···AD···AD—H···A
N1—H1C···F1x0.902.283.135 (11)158
N1—H1C···F1′x0.902.062.959 (11)173
N1—H1D···F10.901.942.831 (11)172
N1—H1D···F1′0.902.163.005 (11)156

Symmetry code: (x) xy, x, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2520).

References

  • Brandenburg, K. (1999). DIAMONDCrystal Impact GbR, Bonn, Germany.
  • Brauer, D. J., Burger, H. & Eujen, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 836–837.
  • Brauer, D. J., Wilke, J. & Eujen, R. (1986). J. Organomet. Chem. 316, 261–269.
  • Bruker (2007). SMART and SAINTBruker AXS Inc., Madison, Wisconsin, USA.
  • Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292. [PubMed]
  • Dadachov, M. S., Tang, L. Q. & Zou, X. D. (2001). Z. Kristallogr. New Cryst. Struct. 216, 141–142.
  • Jiang, J. X., Yu, J. H. & Corma, A. (2010). Angew. Chem. Int. Ed. 49, 3120–3145. [PubMed]
  • Liang, J., Li, Y. F., Yu, J. H., Chen, P., Fang, Q. R., Sun, F. X. & Xu, R. R. (2006). Angew. Chem. Int. Ed. 45, 2546–2548. [PubMed]
  • Lukevics, E., Belyakov, S., Arsenyan, P. & Popelis, J. (1997). J. Organomet. Chem. 549, 163–165.
  • Sheldrick, G. M. (1996). SADABSUniversity of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stalder, S. M. & Wilkinson, A. P. (1997). Chem. Mater. 9, 2168–2173.
  • Tang, L. Q., Dadachov, M. S. & Zou, X. D. (2001a). Z. Kristallogr. New Cryst. Struct. 216, 257–258.
  • Tang, L. Q., Dadachov, M. S. & Zou, X. D. (2001b). Z. Kristallogr. New Cryst. Struct. 216, 259–260.
  • Tang, L. Q., Dadachov, M. S. & Zou, X. D. (2001c). Z. Kristallogr. New Cryst. Struct. 216, 385–386.
  • Tang, L. Q., Dadachov, M. S. & Zou, X. D. (2001d). Z. Kristallogr. New Cryst. Struct. 216, 387–388.
  • Tang, L. Q., Dadachov, M. S. & Zou, X. D. (2001e). Z. Kristallogr. New Cryst. Struct. 216, 389–390.
  • Tang, L. Q., Dadachov, M. S. & Zou, X. D. (2001f). Z. Kristallogr. New Cryst. Struct. 216, 391–392.
  • Wang, G.-M., Sun, Y.-Q. & Yang, G.-Y. (2004). Acta Cryst. E60, m705–m707.
  • Wang, G.-M. & Wang, P. (2011). Acta Cryst. E67, m1278–m1279. [PMC free article] [PubMed]
  • Wang, Y., Yu, J. H., Guo, M. & Xu, R. R. (2003). Angew. Chem. Int. Ed. 42, 4089–4092. [PubMed]
  • Yu, J. H., Wang, Y., Shi, Z. & Xu, R. R. (2001). Chem. Mater. 13, 2972–2978.
  • Yu, J. H. & Xu, R. R. (2003). Acc. Chem. Res. 36, 481–490. [PubMed]
  • Zhang, H.-X., Yang, G.-Y. & Sun, Y.-Q. (2003). Acta Cryst. E59, m185–m187.
  • Zou, X. D., Conradsson, T., Klingsteddt, M., Dadachov, M. S. & O’Keeffe, M. (2005). Nature (London), 437, 716–719. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography