PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bmccancBioMed Centralsearchsubmit a manuscriptregisterthis articleBMC Cancer
 
BMC Cancer. 2012; 12: 7.
Published online 2012 January 5. doi:  10.1186/1471-2407-12-7
PMCID: PMC3329415

The TERT rs2736100 Polymorphism and Cancer Risk: A Meta-analysis Based on 25 Case-Control Studies

Abstract

Background

The association between the TERT rs2736100 single nucleotide polymorphism (SNP) and cancer risk has been studied by many researchers, but the results remain inconclusive. To further explore this association, we performed a meta-analysis.

Methods

A computerized search of PubMed and Embase database for publications on the TERT rs2736100 polymorphism and cancer risk was performed and the genotype data were analyzed in a meta-analysis. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Sensitivity analysis, test of heterogeneity, cumulative meta-analysis and assessment of bias were performed in our meta-analysis.

Results

A significant association between the TERT rs2736100 polymorphism and cancer susceptibility was revealed by the results of the meta-analysis of the 25 case-control studies (GG versus TT: OR = 1.72, 95% CI: 1.58, 1.88; GT versus TT: OR = 1.38, 95% CI: 1.29, 1.47; dominant model-TG + GG versus TT: OR = 1.47, 95% CI: 1.37, 1.58; recessive model-GG versus TT + TG: OR = 1.37, 95% CI 1.31, 1.43; additive model-2GG + TG versus 2TT + TG: OR = 1.30, 95% CI: 1.25, 1.36). Moreover, increased cancer risk in all genetic models was found after stratification of the SNP data by cancer type, ethnicity and source of controls.

Conclusions

In all genetic models, the association between the TERT rs2736100 polymorphism and cancer risk was significant. This meta-analysis suggests that the TERT rs2736100 polymorphism may be a risk factor for cancer. Further functional studies between this polymorphism and cancer risk are warranted.


Articles from BMC Cancer are provided here courtesy of BioMed Central