Search tips
Search criteria 


Logo of narLink to Publisher's site
Nucleic Acids Res. 1990 October 11; 18(19): 5823–5828.
PMCID: PMC332321

Translation of the Saccharomyces cerevisiae tcm1 gene in the absence of a 5'-untranslated leader.


The role of eukaryotic 5'-untranslated messenger RNA leaders is not entirely clear, since they share little sequence similarity among each other. The importance of the leader in determining the efficiency of translation initiation was addressed here by examining the polyribosome distribution of several leader-deletion alleles of the yeast tcm1 gene (coding for ribosomal protein L3). Shortening of this 22-nucleotide leader, or complete removal of it (the first nucleotide of the mRNA becoming the A of the translation initiation codon AUG) permitted translation, albeit reduced. Further deletion of as few as the first two nucleotides of the initiation codon leads to a substantial reduction in ribosome loading, which is compatible with inefficient initiation at the next downstream, out-of-frame, AUG triplet. A second measure of translation initiation was obtained by assaying qualitatively for the production of biologically active L3 protein using growth-resistance to trichodermin. This experiment indicates that ribosomes can recognize the correct initiation codon even in the complete absence of a leader. We conclude that the 5'-untranslated leader of the yeast tcm1 gene is not essential for accurate translation initiation, but enhances its efficiency.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Donahue TF, Cigan AM. Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region. Mol Cell Biol. 1988 Jul;8(7):2955–2963. [PMC free article] [PubMed]
  • Kozak M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev. 1983 Mar;47(1):1–45. [PMC free article] [PubMed]
  • Hinnebusch AG. Novel mechanisms of translational control in Saccharomyces cerevisiae. Trends Genet. 1988 Jun;4(6):169–174. [PubMed]
  • Zitomer RS, Walthall DA, Rymond BC, Hollenberg CP. Saccharomyces cerevisiae ribosomes recognize non-AUG initiation codons. Mol Cell Biol. 1984 Jul;4(7):1191–1197. [PMC free article] [PubMed]
  • Shine J, Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. [PubMed]
  • Hamilton R, Watanabe CK, de Boer HA. Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res. 1987 Apr 24;15(8):3581–3593. [PMC free article] [PubMed]
  • Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. [PMC free article] [PubMed]
  • Baim SB, Sherman F. mRNA structures influencing translation in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1988 Apr;8(4):1591–1601. [PMC free article] [PubMed]
  • Cigan AM, Pabich EK, Donahue TF. Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jul;8(7):2964–2975. [PMC free article] [PubMed]
  • Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. [PubMed]
  • Baim SB, Pietras DF, Eustice DC, Sherman F. A mutation allowing an mRNA secondary structure diminishes translation of Saccharomyces cerevisiae iso-1-cytochrome c. Mol Cell Biol. 1985 Aug;5(8):1839–1846. [PMC free article] [PubMed]
  • Kozak M. Leader length and secondary structure modulate mRNA function under conditions of stress. Mol Cell Biol. 1988 Jul;8(7):2737–2744. [PMC free article] [PubMed]
  • van den Heuvel JJ, Bergkamp RJ, Planta RJ, Raué HA. Effect of deletions in the 5'-noncoding region on the translational efficiency of phosphoglycerate kinase mRNA in yeast. Gene. 1989 Jun 30;79(1):83–95. [PubMed]
  • Cigan AM, Donahue TF. Sequence and structural features associated with translational initiator regions in yeast--a review. Gene. 1987;59(1):1–18. [PubMed]
  • Sedman SA, Gelembiuk GW, Mertz JE. Translation initiation at a downstream AUG occurs with increased efficiency when the upstream AUG is located very close to the 5' cap. J Virol. 1990 Jan;64(1):453–457. [PMC free article] [PubMed]
  • Maicas E, Friesen JD. A sequence pattern that occurs at the transcription initiation region of yeast RNA polymerase II promoters. Nucleic Acids Res. 1990 Jun 11;18(11):3387–3393. [PMC free article] [PubMed]
  • Schultz LD, Friesen JD. Nucleotide sequence of the tcml gene (ribosomal protein L3) of Saccharomyces cerevisiae. J Bacteriol. 1983 Jul;155(1):8–14. [PMC free article] [PubMed]
  • Broach JR. Construction of high copy yeast vectors using 2-microns circle sequences. Methods Enzymol. 1983;101:307–325. [PubMed]
  • Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. [PubMed]
  • Fouser LA, Friesen JD. Mutations in a yeast intron demonstrate the importance of specific conserved nucleotides for the two stages of nuclear mRNA splicing. Cell. 1986 Apr 11;45(1):81–93. [PubMed]
  • Maicas E, Pluthero FG, Friesen JD. The accumulation of three yeast ribosomal proteins under conditions of excess mRNA is determined primarily by fast protein decay. Mol Cell Biol. 1988 Jan;8(1):169–175. [PMC free article] [PubMed]
  • Bergmann JE, Lodish HF. A kinetic model of protein synthesis. Application to hemoglobin synthesis and translational control. J Biol Chem. 1979 Dec 10;254(23):11927–11937. [PubMed]
  • Rhoads RE. Cap recognition and the entry of mRNA into the protein synthesis initiation cycle. Trends Biochem Sci. 1988 Feb;13(2):52–56. [PubMed]
  • Fried HM, Warner JR. Cloning of yeast gene for trichodermin resistance and ribosomal protein L3. Proc Natl Acad Sci U S A. 1981 Jan;78(1):238–242. [PubMed]
  • Wolin SL, Walter P. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J. 1988 Nov;7(11):3559–3569. [PubMed]
  • Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. [PMC free article] [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press