PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bmcmbBioMed Centralsearchsubmit a manuscriptregisterthis articleBMC Molecular Biology
 
BMC Mol Biol. 2012; 13: 4.
Published online 2012 January 31. doi:  10.1186/1471-2199-13-4
PMCID: PMC3311059

Transcriptional activation of microRNA-34a by NF-kappa B in human esophageal cancer cells

Abstract

Background

miR-34a functions as an important tumor suppressor during the process of carcinogenesis. However, the mechanism of miR-34a dysregulation in human malignancies has not been well elucidated. Our study aimed to further investigate the regulation mechanism of miR-34a.

Results

We found that overexpression of NF-kappa B p65 subunit could increase miR-34a levels in EC109, an esophageal squamous cancer cell line, while ectopic expression of DN IkappaB leaded to a significant reduction of miR-34a expression. Bioinformatics analysis suggested three putative KB sites in promoter region of miR-34a gene. Mutation two of these KB sites impaired p65 induced miR-34a transcriptional activity. Chromatin immunoprecipitation and electrophoretic mobility shift assays both showed that NF-kappaB could specifically bind to the third KB site located in miR-34a promoter. In addition, we found that overexpression of NF-kappaB p65 could not successfully induce miR-34a expression in esophageal cancer cell lines with mutant p53 or decreased p53. Reporter assay further showed that NF-kappaB-induced miR-34a transcriptional activity was reduced by p53 impairment. Nevertheless, CHIP analysis suggested binding of NF-kappaB to miR-34a promoter was not affected in cells with mutant p53.

Conclusions

Our work indicates a novel mechanism of miR-34a regulation that NF-kappaB could elevate miR-34a expression levels through directly binding to its promoter. And wildtype p53 is responsible for NF-kappaB-mediated miR-34a transcriptional activity but not for NF-kappaB binding. These findings might be helpful in understanding miR-34a abnormality in human malignancies and open new perspectives for the roles of miR-34a and NF-kappaB in tumor progression.

Keywords: miR-34a, NF-kappa B, p53, gene expression regulation

Articles from BMC Molecular Biology are provided here courtesy of BioMed Central