PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of aquabioBioMed CentralBiomed Central Web Sitesearchsubmit a manuscriptregisterthis articleSaline Systems
 
Aquat Biosyst. 2012; 8: 4.
Published online 2012 February 2. doi:  10.1186/2046-9063-8-4
PMCID: PMC3310334

Function and biotechnology of extremophilic enzymes in low water activity

Abstract

Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology.

Keywords: Extremophile, Extremozymes, Protein stability, Halophiles, Psychrophile, Cold activity, Organic solvent, Low temperature, High salinity, Biofuel, Bioenergy

Articles from Aquatic Biosystems are provided here courtesy of BioMed Central