PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Mar 1, 2012; 68(Pt 3): o596.
Published online Feb 4, 2012. doi:  10.1107/S1600536812003923
PMCID: PMC3297320
(E)-2-({2-[(E)-(Hy­droxy­imino)­meth­yl]phen­oxy}meth­yl)-3-phenyl­acrylonitrile
Suresh Govindan,a Sabari Vijayakumar,a Srinivasan Jayakumar,b Bakthadoss Mannickam,b and Aravindhan Sanmargama*
aDepartment of Physics, Presidency College, Chennai 600 005, India
bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
Correspondence e-mail: aravindhanpresidency/at/gmail.com
Received December 22, 2011; Accepted January 30, 2012.
Abstract
In the title compound, C17H14N2O2, the hy­droxy­ethanimine group adopts an anti­periplanar conformation. In the crystal, mol­ecules are linked by O—H(...)N hydrogen bonds, forming zigzag chains running along the c axis.
Related literature  
For the structures of other acrylate derivatives, see: Zhang et al. (2009 [triangle]); Wang et al. (2011 [triangle]); SakthiMurugesan et al. (2011 [triangle]); Govindan et al. (2011 [triangle]). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003 [triangle]). For the biological activity of caffeic acids, see: Hwang et al. (2001 [triangle]); Altug et al. (2008 [triangle]); Ates et al. (2006 [triangle]); Atik et al. (2006 [triangle]); Padinchare et al. (2001 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-68-0o596-scheme1.jpg Object name is e-68-0o596-scheme1.jpg
Crystal data  
  • C17H14N2O2
  • M r = 278.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-0o596-efi1.jpg
  • a = 15.8867 (5) Å
  • b = 6.2381 (2) Å
  • c = 15.1874 (4) Å
  • β = 107.199 (2)°
  • V = 1437.81 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.2 × 0.2 × 0.2 mm
Data collection  
  • Oxford Diffraction Xcalibur-S diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.980, T max = 0.990
  • 19516 measured reflections
  • 4490 independent reflections
  • 2774 reflections with I > 2σ(I)
  • R int = 0.031
Refinement  
  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.131
  • S = 0.99
  • 4490 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.21 e Å−3
Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812003923/bt5765sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003923/bt5765Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812003923/bt5765Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
AS thanks the UGC, India, for financial support.
supplementary crystallographic information
Comment
Recently, 2-cyanoacrylates have been extensively used as agrochemicals because of their unique mechanism of action and good environmental profiles (Zhang et al., 2009). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008). These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and antiinflammatory properties (Atik et al., 2006; Padinchare et al., 2001; Ates et al., 2006). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out and the results are presented here. X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The oxime group has the C=N bond in an E configuration. The hydroxy ethanimine group is essentially coplanar with the ring to which it is attached. The crystal packing is stabilized by an O—H···N hydrogen bond(Fig. 2).
Experimental
To a stirred solution of (E)-2-((2-formylphenoxy)methyl)-3-phenylacrylonitrile (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and the crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 τimes 15 ml). The combined organic layer was washed with brine (2 τimes 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (E)-2-((2-((E)-(Hydroxyimino)methyl)phenoxy)methyl)-3-phenylacrylonitrile as a colourless solid.
Refinement
H atoms were positioned at calculated positions and refined using a riding model with O-H=0.82Å, Caromatic-H = 0.93Å and Cmethylene-H= 0.97Å and U(H) set to 1.2Ueq(C) or 1.5Ueq(O).
Figures
Fig. 1.
Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
Fig. 2.
A view of the crystal packing. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
Crystal data
C17H14N2O2F(000) = 584
Mr = 278.30Dx = 1.286 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8725 reflections
a = 15.8867 (5) Åθ = 2.8–29.1°
b = 6.2381 (2) ŵ = 0.09 mm1
c = 15.1874 (4) ÅT = 293 K
β = 107.199 (2)°Monoclinic, colourless
V = 1437.81 (7) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection
Oxford Diffraction Xcalibur-S diffractometer4490 independent reflections
Radiation source: fine-focus sealed tube2774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 15.9948 pixels mm-1θmax = 31.4°, θmin = 2.7°
ω scansh = −20→23
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −9→9
Tmin = 0.980, Tmax = 0.990l = −22→22
19516 measured reflections
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0521P)2 + 0.226P] where P = (Fo2 + 2Fc2)/3
4490 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.21 e Å3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
C10.30906 (9)0.0194 (2)0.29768 (9)0.0471 (3)
H10.26620.02310.24070.057*
C20.37843 (8)0.1812 (2)0.31995 (8)0.0405 (3)
C30.44575 (9)0.1763 (2)0.40269 (9)0.0500 (3)
H30.44560.06970.44550.060*
C40.51256 (9)0.3247 (2)0.42297 (9)0.0525 (3)
H40.55740.31760.47840.063*
C50.51234 (9)0.4837 (2)0.36050 (10)0.0542 (4)
H50.55740.58490.37400.065*
C60.44610 (9)0.4954 (2)0.27781 (9)0.0488 (3)
H60.44640.60410.23600.059*
C70.37943 (8)0.3449 (2)0.25758 (8)0.0399 (3)
C80.30879 (9)0.5024 (2)0.11052 (9)0.0474 (3)
H8A0.36120.49520.09040.057*
H8B0.30580.64350.13630.057*
C90.22813 (8)0.4609 (2)0.03129 (8)0.0411 (3)
C100.22894 (9)0.2607 (2)−0.01427 (9)0.0486 (3)
C110.16197 (9)0.6014 (2)0.00727 (8)0.0444 (3)
H110.17180.72510.04310.053*
C120.07740 (9)0.5990 (2)−0.06398 (8)0.0435 (3)
C130.04331 (10)0.4260 (2)−0.12169 (10)0.0577 (4)
H130.07680.3021−0.11770.069*
C14−0.03912 (10)0.4363 (3)−0.18424 (10)0.0629 (4)
H14−0.06070.3196−0.22230.075*
C15−0.08983 (10)0.6164 (3)−0.19123 (11)0.0633 (4)
H15−0.14600.6212−0.23300.076*
C16−0.05728 (11)0.7892 (3)−0.13634 (12)0.0694 (5)
H16−0.09110.9128−0.14140.083*
C170.02527 (10)0.7807 (2)−0.07360 (10)0.0577 (4)
H170.04660.8996−0.03680.069*
N10.30657 (8)−0.12586 (19)0.35497 (8)0.0527 (3)
N20.23413 (9)0.0992 (2)−0.04726 (10)0.0728 (4)
O10.23639 (8)−0.26430 (19)0.31926 (8)0.0716 (3)
H1A0.2369−0.35870.35700.107*
O20.31108 (6)0.34087 (15)0.17729 (6)0.0487 (2)
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
C10.0432 (7)0.0502 (8)0.0433 (7)0.0001 (6)0.0055 (6)0.0077 (6)
C20.0369 (6)0.0437 (7)0.0396 (6)0.0029 (5)0.0093 (5)0.0023 (5)
C30.0488 (8)0.0581 (8)0.0397 (7)0.0044 (7)0.0079 (6)0.0084 (6)
C40.0455 (8)0.0654 (9)0.0387 (7)0.0008 (7)0.0004 (6)−0.0043 (6)
C50.0488 (8)0.0567 (9)0.0514 (8)−0.0101 (7)0.0061 (6)−0.0076 (7)
C60.0479 (8)0.0474 (8)0.0470 (7)−0.0046 (6)0.0075 (6)0.0040 (6)
C70.0359 (6)0.0441 (7)0.0372 (6)0.0032 (5)0.0070 (5)0.0013 (5)
C80.0481 (8)0.0434 (7)0.0456 (7)−0.0020 (6)0.0060 (6)0.0092 (6)
C90.0460 (7)0.0386 (6)0.0367 (6)−0.0009 (5)0.0090 (5)0.0048 (5)
C100.0443 (8)0.0476 (8)0.0497 (7)0.0045 (6)0.0076 (6)0.0034 (6)
C110.0524 (8)0.0397 (7)0.0387 (6)0.0005 (6)0.0096 (6)−0.0009 (5)
C120.0453 (7)0.0462 (7)0.0377 (6)0.0033 (6)0.0104 (5)0.0028 (5)
C130.0551 (9)0.0542 (9)0.0547 (8)0.0079 (7)0.0023 (7)−0.0070 (7)
C140.0565 (10)0.0695 (10)0.0541 (9)−0.0032 (8)0.0030 (7)−0.0095 (7)
C150.0449 (8)0.0833 (12)0.0551 (9)0.0031 (8)0.0048 (7)0.0054 (8)
C160.0536 (10)0.0700 (11)0.0773 (11)0.0192 (8)0.0080 (8)0.0012 (9)
C170.0551 (9)0.0527 (9)0.0602 (9)0.0091 (7)0.0093 (7)−0.0048 (7)
N10.0521 (7)0.0517 (7)0.0522 (7)−0.0081 (5)0.0119 (5)0.0032 (5)
N20.0731 (10)0.0553 (8)0.0837 (10)0.0116 (7)0.0136 (8)−0.0131 (7)
O10.0701 (8)0.0631 (7)0.0727 (7)−0.0239 (6)0.0074 (6)0.0106 (6)
O20.0427 (5)0.0525 (5)0.0421 (5)−0.0062 (4)−0.0009 (4)0.0133 (4)
Geometric parameters (Å, º)
C1—N11.2649 (16)C9—C111.3339 (18)
C1—C21.4583 (18)C9—C101.4296 (19)
C1—H10.9300C10—N21.1392 (17)
C2—C31.3889 (18)C11—C121.4548 (18)
C2—C71.3962 (17)C11—H110.9300
C3—C41.373 (2)C12—C171.3857 (19)
C3—H30.9300C12—C131.3951 (19)
C4—C51.372 (2)C13—C141.373 (2)
C4—H40.9300C13—H130.9300
C5—C61.3814 (19)C14—C151.368 (2)
C5—H50.9300C14—H140.9300
C6—C71.3804 (18)C15—C161.367 (2)
C6—H60.9300C15—H150.9300
C7—O21.3725 (14)C16—C171.375 (2)
C8—O21.4225 (14)C16—H160.9300
C8—C91.4983 (18)C17—H170.9300
C8—H8A0.9700N1—O11.3876 (15)
C8—H8B0.9700O1—H1A0.8200
N1—C1—C2120.76 (12)C11—C9—C8121.58 (12)
N1—C1—H1119.6C10—C9—C8114.31 (11)
C2—C1—H1119.6N2—C10—C9176.18 (16)
C3—C2—C7118.02 (12)C9—C11—C12132.56 (12)
C3—C2—C1121.43 (12)C9—C11—H11113.7
C7—C2—C1120.55 (11)C12—C11—H11113.7
C4—C3—C2121.70 (13)C17—C12—C13117.24 (13)
C4—C3—H3119.2C17—C12—C11117.49 (12)
C2—C3—H3119.2C13—C12—C11125.23 (12)
C5—C4—C3119.26 (12)C14—C13—C12120.79 (14)
C5—C4—H4120.4C14—C13—H13119.6
C3—C4—H4120.4C12—C13—H13119.6
C4—C5—C6120.82 (13)C15—C14—C13120.76 (15)
C4—C5—H5119.6C15—C14—H14119.6
C6—C5—H5119.6C13—C14—H14119.6
C7—C6—C5119.64 (12)C16—C15—C14119.48 (14)
C7—C6—H6120.2C16—C15—H15120.3
C5—C6—H6120.2C14—C15—H15120.3
O2—C7—C6124.30 (11)C15—C16—C17120.22 (15)
O2—C7—C2115.14 (11)C15—C16—H16119.9
C6—C7—C2120.56 (11)C17—C16—H16119.9
O2—C8—C9106.60 (10)C16—C17—C12121.48 (15)
O2—C8—H8A110.4C16—C17—H17119.3
C9—C8—H8A110.4C12—C17—H17119.3
O2—C8—H8B110.4C1—N1—O1111.22 (11)
C9—C8—H8B110.4N1—O1—H1A109.5
H8A—C8—H8B108.6C7—O2—C8117.86 (9)
C11—C9—C10124.11 (12)
N1—C1—C2—C32.7 (2)C8—C9—C11—C12−178.61 (12)
N1—C1—C2—C7−178.10 (13)C9—C11—C12—C17−176.32 (13)
C7—C2—C3—C4−1.05 (19)C9—C11—C12—C135.7 (2)
C1—C2—C3—C4178.19 (12)C17—C12—C13—C14−0.9 (2)
C2—C3—C4—C50.8 (2)C11—C12—C13—C14177.09 (14)
C3—C4—C5—C6−0.2 (2)C12—C13—C14—C15−0.2 (2)
C4—C5—C6—C7−0.2 (2)C13—C14—C15—C161.1 (3)
C5—C6—C7—O2−179.43 (12)C14—C15—C16—C17−1.0 (3)
C5—C6—C7—C20.0 (2)C15—C16—C17—C12−0.1 (3)
C3—C2—C7—O2−179.90 (11)C13—C12—C17—C161.1 (2)
C1—C2—C7—O20.86 (16)C11—C12—C17—C16−177.09 (14)
C3—C2—C7—C60.63 (18)C2—C1—N1—O1−178.97 (12)
C1—C2—C7—C6−178.62 (12)C6—C7—O2—C80.00 (18)
O2—C8—C9—C11116.39 (13)C2—C7—O2—C8−179.45 (11)
O2—C8—C9—C10−63.22 (14)C9—C8—O2—C7−179.66 (10)
C10—C9—C11—C121.0 (2)
Hydrogen-bond geometry (Å, º)
D—H···AD—HH···AD···AD—H···A
O1—H1A···N2i0.822.102.9187 (17)178
Symmetry code: (i) x, −y−1/2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5765).
  • Altug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135–142. [PubMed]
  • Ates, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283–289. [PubMed]
  • Atik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293–297. [PubMed]
  • Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Govindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753. [PMC free article] [PubMed]
  • Hwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429–1437. [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Padinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215–217.
  • SakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354. [PMC free article] [PubMed]
  • Zhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90. [PMC free article] [PubMed]
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography