PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Mar 1, 2012; 68(Pt 3): o570.
Published online Feb 4, 2012. doi:  10.1107/S160053681200270X
PMCID: PMC3297297
(E)-2-({2-[(E)-(Hy­droxy­imino)­meth­yl]phen­oxy}meth­yl)-3-p-tolyl­acrylonitrile
G. Suresh,a V. Sabari,a J. Srinivasan,b Bakthadoss Mannickam,b and S. Aravindhana*
aDepartment of Physics, Presidency College, Chennai 600 005, India
bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
Correspondence e-mail: aravindhanpresidency/at/gmail.com
Received December 19, 2011; Accepted January 21, 2012.
Abstract
In the title compound, C18H16N2O2, the hy­droxy­ethanimine group is essentially coplanar with the ring to which it is attached (C—C—N—O torsion angle = −176.9°). Mol­ecules are linked into cyclic centrosymmetric R 2 2(6) dimers via O—H(...)N hydrogen bonds.
Related literature  
For the structures of other acrylate derivatives, see: Zhang et al. (2009 [triangle]); Wang et al. (2011 [triangle]); SakthiMurugesan et al. (2011 [triangle]); Govindan et al. (2011 [triangle]). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003 [triangle]). For the biological activity of caffeic acids, see: Hwang et al. (2001 [triangle]); Altug et al. (2008 [triangle]); Ates et al. (2006 [triangle]); Atik et al. (2006 [triangle]); Padinchare et al. (2001 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-68-0o570-scheme1.jpg Object name is e-68-0o570-scheme1.jpg
Crystal data  
  • C18H16N2O2
  • M r = 292.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-0o570-efi1.jpg
  • a = 8.4851 (2) Å
  • b = 9.3900 (3) Å
  • c = 10.0779 (3) Å
  • α = 100.208 (2)°
  • β = 90.725 (1)°
  • γ = 105.206 (1)°
  • V = 761.10 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.2 × 0.2 × 0.2 mm
Data collection  
  • Oxford Diffraction Xcalibur-S diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.980, T max = 0.990
  • 18160 measured reflections
  • 4229 independent reflections
  • 3031 reflections with I > 2σ(I)
  • R int = 0.022
Refinement  
  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.151
  • S = 1.03
  • 4229 reflections
  • 201 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.18 e Å−3
Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681200270X/bt5756sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200270X/bt5756Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681200270X/bt5756Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
SA thanks the UGC, India, for financial support.
supplementary crystallographic information
Comment
Recently, 2-cyanoacrylates have been extensively used as agrochemicals because of their unique mechanism of action and good environmental profiles (Zhang et al., 2009). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003).Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008).These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and antiinflammatory properties (Atik et al.,2006; Padinchare et al., 2001; Ates et al., 2006). Against this background,and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out and the results are presented here. X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The oxime group having the C=N forming an E configuration.the hydroxy ethanimine group is essentially coplanar with the ring to which it is attached.
The hydroxy ethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R22(6) (Wang et al., 2011; Govindan et al., 2011; SakthiMurugesan et al., 2011). The crystal packing is stabilized by intermolecular O—H···N hydrogen bonds (Fig. 2).
Experimental
To a stirred solution of (E)-2-((2-formylphenoxy)methyl)-3-p-tolylacrylonitrile (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and the crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 τimes 15 ml). The combined organic layer was washed with brine (2 τimes 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (E)-2-((2-((E)-(Hydroxyimino)methyl)phenoxy)methyl)-3-p-tolylacrylonitrile as a colourless solid.
Refinement
H atoms were found in a difference map but treated as riding with O-H = 0.82Å, and C-H = 0.93-0.97Å. U(H) was set to 1.5 Ueq(O, Cmethyl) or 1.2 Ueq(C)
Figures
Fig. 1.
Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
Fig. 2.
A view of the crystal packing. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
Crystal data
C18H16N2O2Z = 2
Mr = 292.33F(000) = 308
Triclinic, P1Dx = 1.276 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4851 (2) ÅCell parameters from 8725 reflections
b = 9.3900 (3) Åθ = 2.8–29.1°
c = 10.0779 (3) ŵ = 0.08 mm1
α = 100.208 (2)°T = 293 K
β = 90.725 (1)°Triclinic, colourless
γ = 105.206 (1)°0.2 × 0.2 × 0.2 mm
V = 761.10 (4) Å3
Data collection
Oxford Diffraction Xcalibur-S diffractometer4229 independent reflections
Radiation source: fine-focus sealed tube3031 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 15.9948 pixels mm-1θmax = 29.6°, θmin = 2.1°
ω scansh = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −12→12
Tmin = 0.980, Tmax = 0.990l = −13→13
18160 measured reflections
Refinement
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.151w = 1/[σ2(Fo2) + (0.0732P)2 + 0.135P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4229 reflectionsΔρmax = 0.24 e Å3
201 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0173 (18)
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
C10.2633 (2)0.81093 (18)1.11597 (16)0.0584 (4)
H10.20240.85441.17910.070*
C20.22978 (17)0.64825 (16)1.09291 (13)0.0453 (3)
C30.13864 (19)0.57501 (19)1.18740 (15)0.0561 (4)
H30.10030.63181.25850.067*
C40.10362 (19)0.42252 (19)1.17926 (16)0.0589 (4)
H40.04030.37671.24250.071*
C50.1631 (2)0.33864 (18)1.07685 (16)0.0586 (4)
H50.14290.23561.07210.070*
C60.25320 (19)0.40619 (16)0.98021 (14)0.0532 (3)
H60.29380.34820.91150.064*
C70.28343 (16)0.55934 (15)0.98496 (12)0.0421 (3)
C80.3950 (2)0.53835 (16)0.76860 (13)0.0522 (3)
H8A0.30040.45350.73960.063*
H8B0.48740.50030.78660.063*
C90.43216 (17)0.63100 (15)0.66042 (12)0.0450 (3)
C100.29368 (19)0.66178 (18)0.60167 (15)0.0559 (4)
C110.58348 (17)0.67335 (15)0.61876 (13)0.0460 (3)
H110.66090.64330.66500.055*
C120.64990 (16)0.75770 (15)0.51448 (12)0.0435 (3)
C130.81374 (17)0.77192 (17)0.48925 (14)0.0495 (3)
H130.87460.72720.53800.059*
C140.88750 (18)0.85082 (17)0.39364 (15)0.0549 (4)
H140.99740.85890.37950.066*
C150.80160 (19)0.91823 (16)0.31820 (14)0.0536 (4)
C160.6389 (2)0.9040 (2)0.34270 (17)0.0634 (4)
H160.57870.94870.29330.076*
C170.56333 (19)0.8258 (2)0.43805 (17)0.0599 (4)
H170.45350.81820.45170.072*
C180.8817 (3)1.0064 (2)0.21478 (18)0.0740 (5)
H18A0.84240.95110.12580.111*
H18B0.99821.02320.22470.111*
H18C0.85581.10130.22780.111*
N10.36637 (16)0.89828 (13)1.05886 (12)0.0535 (3)
N20.1784 (2)0.6810 (2)0.55663 (18)0.0851 (5)
O10.37363 (18)1.04895 (13)1.10956 (14)0.0795 (4)
H1A0.44511.10351.07330.119*
O20.36281 (13)0.63175 (10)0.88863 (9)0.0495 (3)
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
C10.0724 (10)0.0543 (9)0.0521 (8)0.0226 (7)0.0238 (7)0.0100 (7)
C20.0489 (7)0.0495 (7)0.0402 (6)0.0151 (6)0.0072 (5)0.0123 (5)
C30.0607 (8)0.0672 (10)0.0479 (7)0.0241 (7)0.0193 (6)0.0195 (7)
C40.0598 (9)0.0687 (10)0.0552 (8)0.0151 (7)0.0152 (7)0.0322 (8)
C50.0720 (10)0.0498 (8)0.0534 (8)0.0072 (7)0.0059 (7)0.0218 (7)
C60.0708 (9)0.0444 (8)0.0419 (7)0.0102 (7)0.0085 (6)0.0091 (6)
C70.0475 (6)0.0442 (7)0.0330 (6)0.0075 (5)0.0036 (5)0.0102 (5)
C80.0743 (9)0.0423 (7)0.0355 (6)0.0098 (6)0.0139 (6)0.0035 (5)
C90.0583 (8)0.0414 (7)0.0322 (6)0.0099 (6)0.0098 (5)0.0037 (5)
C100.0535 (8)0.0653 (10)0.0487 (8)0.0125 (7)0.0183 (6)0.0147 (7)
C110.0536 (7)0.0481 (7)0.0361 (6)0.0132 (6)0.0034 (5)0.0078 (5)
C120.0467 (7)0.0444 (7)0.0368 (6)0.0085 (5)0.0052 (5)0.0059 (5)
C130.0479 (7)0.0519 (8)0.0467 (7)0.0115 (6)0.0030 (5)0.0064 (6)
C140.0498 (7)0.0533 (8)0.0547 (8)0.0060 (6)0.0144 (6)0.0031 (7)
C150.0655 (9)0.0440 (7)0.0430 (7)0.0021 (6)0.0115 (6)0.0042 (6)
C160.0644 (9)0.0693 (11)0.0619 (9)0.0150 (8)0.0042 (7)0.0307 (8)
C170.0475 (7)0.0738 (11)0.0657 (9)0.0170 (7)0.0114 (7)0.0310 (8)
C180.0942 (13)0.0603 (10)0.0604 (10)0.0033 (9)0.0250 (9)0.0171 (8)
N10.0721 (8)0.0417 (6)0.0470 (6)0.0179 (6)0.0113 (6)0.0043 (5)
N20.0583 (9)0.1209 (15)0.0875 (11)0.0292 (9)0.0200 (8)0.0404 (11)
O10.1108 (11)0.0418 (6)0.0846 (9)0.0226 (6)0.0388 (8)0.0032 (6)
O20.0706 (6)0.0383 (5)0.0342 (4)0.0058 (4)0.0158 (4)0.0051 (4)
Geometric parameters (Å, º)
C1—N11.2541 (19)C10—N21.143 (2)
C1—C21.454 (2)C11—C121.4578 (18)
C1—H10.9300C11—H110.9300
C2—C31.3963 (19)C12—C131.3923 (19)
C2—C71.4063 (17)C12—C171.396 (2)
C3—C41.371 (2)C13—C141.376 (2)
C3—H30.9300C13—H130.9300
C4—C51.369 (2)C14—C151.382 (2)
C4—H40.9300C14—H140.9300
C5—C61.385 (2)C15—C161.382 (2)
C5—H50.9300C15—C181.504 (2)
C6—C71.3850 (19)C16—C171.376 (2)
C6—H60.9300C16—H160.9300
C7—O21.3670 (15)C17—H170.9300
C8—O21.4371 (15)C18—H18A0.9600
C8—C91.4985 (19)C18—H18B0.9600
C8—H8A0.9700C18—H18C0.9600
C8—H8B0.9700N1—O11.4013 (15)
C9—C111.3371 (19)O1—H1A0.8200
C9—C101.427 (2)
N1—C1—C2126.24 (13)C9—C11—C12132.12 (13)
N1—C1—H1116.9C9—C11—H11113.9
C2—C1—H1116.9C12—C11—H11113.9
C3—C2—C7117.57 (13)C13—C12—C17117.22 (13)
C3—C2—C1116.91 (12)C13—C12—C11117.23 (12)
C7—C2—C1125.51 (12)C17—C12—C11125.54 (12)
C4—C3—C2122.44 (14)C14—C13—C12121.36 (13)
C4—C3—H3118.8C14—C13—H13119.3
C2—C3—H3118.8C12—C13—H13119.3
C5—C4—C3119.14 (13)C13—C14—C15121.31 (13)
C5—C4—H4120.4C13—C14—H14119.3
C3—C4—H4120.4C15—C14—H14119.3
C4—C5—C6120.48 (14)C16—C15—C14117.50 (14)
C4—C5—H5119.8C16—C15—C18120.80 (16)
C6—C5—H5119.8C14—C15—C18121.69 (15)
C7—C6—C5120.58 (13)C17—C16—C15121.93 (15)
C7—C6—H6119.7C17—C16—H16119.0
C5—C6—H6119.7C15—C16—H16119.0
O2—C7—C6123.63 (12)C16—C17—C12120.67 (14)
O2—C7—C2116.70 (11)C16—C17—H17119.7
C6—C7—C2119.66 (12)C12—C17—H17119.7
O2—C8—C9108.34 (11)C15—C18—H18A109.5
O2—C8—H8A110.0C15—C18—H18B109.5
C9—C8—H8A110.0H18A—C18—H18B109.5
O2—C8—H8B110.0C15—C18—H18C109.5
C9—C8—H8B110.0H18A—C18—H18C109.5
H8A—C8—H8B108.4H18B—C18—H18C109.5
C11—C9—C10123.51 (12)C1—N1—O1111.61 (12)
C11—C9—C8121.38 (13)N1—O1—H1A109.5
C10—C9—C8115.02 (12)C7—O2—C8116.51 (10)
N2—C10—C9176.93 (17)
N1—C1—C2—C3165.75 (16)C8—C9—C11—C12177.74 (13)
N1—C1—C2—C7−13.2 (3)C9—C11—C12—C13−174.78 (14)
C7—C2—C3—C41.3 (2)C9—C11—C12—C175.4 (2)
C1—C2—C3—C4−177.81 (15)C17—C12—C13—C140.5 (2)
C2—C3—C4—C51.6 (2)C11—C12—C13—C14−179.33 (12)
C3—C4—C5—C6−2.0 (2)C12—C13—C14—C15−0.4 (2)
C4—C5—C6—C7−0.5 (2)C13—C14—C15—C160.3 (2)
C5—C6—C7—O2−175.94 (13)C13—C14—C15—C18179.17 (14)
C5—C6—C7—C23.5 (2)C14—C15—C16—C17−0.2 (2)
C3—C2—C7—O2175.69 (12)C18—C15—C16—C17−179.07 (16)
C1—C2—C7—O2−5.3 (2)C15—C16—C17—C120.2 (3)
C3—C2—C7—C6−3.8 (2)C13—C12—C17—C16−0.4 (2)
C1—C2—C7—C6175.23 (14)C11—C12—C17—C16179.43 (15)
O2—C8—C9—C11108.86 (14)C2—C1—N1—O1−176.87 (15)
O2—C8—C9—C10−74.60 (16)C6—C7—O2—C88.7 (2)
C11—C9—C10—N2156 (3)C2—C7—O2—C8−170.73 (12)
C8—C9—C10—N2−21 (3)C9—C8—O2—C7162.41 (12)
C10—C9—C11—C121.5 (2)
Hydrogen-bond geometry (Å, º)
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.102.795 (2)143
Symmetry code: (i) −x+1, −y+2, −z+2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5756).
  • Altug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135–142. [PubMed]
  • Ates, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283–289. [PubMed]
  • Atik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293–297. [PubMed]
  • Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Govindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753. [PMC free article] [PubMed]
  • Hwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429–1437. [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Padinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215–217.
  • SakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354. [PMC free article] [PubMed]
  • Zhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90. [PMC free article] [PubMed]
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography