PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bmcgeneBioMed Centralsearchsubmit a manuscriptregisterthis articleBMC Genetics
 
BMC Genet. 2012; 13: 7.
Published online Feb 6, 2012. doi:  10.1186/1471-2156-13-7
PMCID: PMC3296579
Weighted selective collapsing strategy for detecting rare and common variants in genetic association study
Yilin Dai,corresponding author1 Renfang Jiang,1 and Jianping Dong1
1Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA
corresponding authorCorresponding author.
Yilin Dai: ydai/at/mtu.edu; Renfang Jiang: rjiang/at/mtu.edu; Jianping Dong: jdong/at/mtu.edu
Received July 31, 2011; Accepted February 6, 2012.
Abstract
Background
Genome-wide association studies (GWAS) have been used successfully in detecting associations between common genetic variants and complex diseases. However, common SNPs detected by current GWAS only explain a small proportion of heritable variability. With the development of next-generation sequencing technologies, researchers find more and more evidence to support the role played by rare variants in heritable variability. However, rare and common variants are often studied separately. The objective of this paper is to develop a robust strategy to analyze association between complex traits and genetic regions using both common and rare variants.
Results
We propose a weighted selective collapsing strategy for both candidate gene studies and genome-wide association scans. The strategy considers genetic information from both common and rare variants, selectively collapses all variants in a given region by a forward selection procedure, and uses an adaptive weight to favor more likely causal rare variants. Under this strategy, two tests are proposed. One test denoted by BwSC is sensitive to the directions of genetic effects, and it separates the deleterious and protective effects into two components. Another denoted by BwSCd is robust in the directions of genetic effects, and it considers the difference of the two components. In our simulation studies, BwSC achieves a higher power when the casual variants have the same genetic effect, while BwSCd is as powerful as several existing tests when a mixed genetic effect exists. Both of the proposed tests work well with and without the existence of genetic effects from common variants.
Conclusions
Two tests using a weighted selective collapsing strategy provide potentially powerful methods for association studies of sequencing data. The tests have a higher power when both common and rare variants contribute to the heritable variability and the effect of common variants is not strong enough to be detected by traditional methods. Our simulation studies have demonstrated a substantially higher power for both tests in all scenarios regardless whether the common SNPs are associated with the trait or not.
Articles from BMC Genetics are provided here courtesy of
BioMed Central