PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 March 1; 68(Pt 3): o608.
Published online 2012 February 4. doi:  10.1107/S1600536812002711
PMCID: PMC3295410

Methyl (E)-2-({2-[(E)-(hy­droxy­imino)­meth­yl]phen­oxy}meth­yl)-3-phenyl­acrylate

Abstract

In the title compound, C18H17NO4, the hy­droxy­ethanimine group is essentially coplanar with the ring to which it is attached [C—C—N—O torsion angle = 179.94 (14)°]. The mol­ecules are linked into cyclic centrosymmetric R 2 2(6) dimers via O—H(...)N hydrogen bonds and the crystal packing is further stabilized by C—H(...)O inter­actions.

Related literature  

For structures of other acrylate derivatives, see: Zhang et al. (2009 [triangle]); Wang et al. (2011 [triangle]); SakthiMurugesan et al. (2011 [triangle]); Govindan et al. (2011 [triangle]). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003 [triangle]). For the biological activity of caffeic acids, see: Hwang et al. (2001 [triangle]); Altug et al. (2008 [triangle]); Ates et al. (2006 [triangle]); Atik et al. (2006 [triangle]); Padinchare et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-0o608-scheme1.jpg

Experimental  

Crystal data  

  • C18H17NO4
  • M r = 311.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-0o608-efi1.jpg
  • a = 9.6463 (4) Å
  • b = 7.7062 (3) Å
  • c = 22.4675 (9) Å
  • β = 100.337 (2)°
  • V = 1643.04 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.2 × 0.2 × 0.2 mm

Data collection  

  • Oxford Diffraction Xcalibur-S diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.980, T max = 0.990
  • 17182 measured reflections
  • 3692 independent reflections
  • 2537 reflections with I > 2σ(I)
  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.127
  • S = 1.02
  • 3692 reflections
  • 211 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812002711/bt5745sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812002711/bt5745Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812002711/bt5745Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SA thanks the UGC, India, for financial support.

supplementary crystallographic information

Comment

Recently, 2-cyanoacrylates have been extensively used as agrochemicals because of their unique mechanism of action and good environmental profiles (Zhang et al., 2009). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008).These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and antiinflammatory properties (Atik et al.,2006; Padinchare et al., 2001; Ates et al., 2006). Against this background,and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out and the results are presented here. X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The oxime group having the C=N forming an E configuration. The hydroxy ethanimine group is essentially coplanar with the ring to which it is attached [C2—C1—N1—O1 torsion angle = 179.9°]

The enoate group assumes an extended conformation as can be seen from torsion angles C12—C9—C10—O4 [-178.7°] and C9—C10—O4—C11 [178.4°]. The hydroxy ethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R22(6)(Wang et al. (2011), Govindan et al. (2011), SakthiMurugesan et al. (2011)). Crystal packing is stabilized by C15—H15···O3 and O1—H1A···N1 type intermolecular hydrogen bonds and values are tabulated. The crystal packing (Fig.2) shows the presence of inter-molecular hydrogen bonding.

Experimental

To a stirred solution of (E)-methyl 2-((2-formylphenoxy)methyl)-3-phenylacrylate (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 × 15 ml). The combined organic layer was washed with brine (2 × 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (E)-Methyl 2-((2-((E)-(hydroxyimino)methyl)phenoxy)methyl)-3-phenylacrylate as a colourless solid.

Refinement

Hydrogen atoms were set to calculated positions and refined as riding on their parent atoms with O-H = 0.82Å and C-H ranging from 0.93Å to 0.97Å and U(H) set to 1.2 Ueq(C) or 1.5 Ueq(Cmethyl, O).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids for H atoms. H atoms have been omitted for clarity.
Fig. 2.
A view of the crystal packing. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C18H17NO4F(000) = 656
Mr = 311.33Dx = 1.259 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6463 (4) ÅCell parameters from 8725 reflections
b = 7.7062 (3) Åθ = 2.8–29.1°
c = 22.4675 (9) ŵ = 0.09 mm1
β = 100.337 (2)°T = 293 K
V = 1643.04 (11) Å3Monoclinic, colourless
Z = 40.2 × 0.2 × 0.2 mm

Data collection

Oxford Diffraction Xcalibur-S diffractometer3692 independent reflections
Radiation source: fine-focus sealed tube2537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 15.9948 pixels mm-1θmax = 27.3°, θmin = 2.2°
ω scansh = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −9→9
Tmin = 0.980, Tmax = 0.990l = −18→29
17182 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.127w = 1/[σ2(Fo2) + (0.0557P)2 + 0.3308P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3692 reflectionsΔρmax = 0.21 e Å3
211 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0173 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.00948 (17)0.7108 (2)0.07286 (7)0.0513 (4)
H10.08180.70200.10620.062*
C2−0.09006 (15)0.56814 (19)0.05966 (6)0.0444 (3)
C3−0.20363 (17)0.5708 (2)0.01196 (7)0.0583 (4)
H3−0.21810.6677−0.01300.070*
C4−0.29464 (18)0.4335 (3)0.00100 (8)0.0667 (5)
H4−0.37110.4384−0.03070.080*
C5−0.27291 (18)0.2889 (3)0.03682 (8)0.0626 (5)
H5−0.33440.19530.02900.075*
C6−0.16062 (18)0.2804 (2)0.08442 (8)0.0566 (4)
H6−0.14590.18150.10840.068*
C7−0.07031 (15)0.4206 (2)0.09599 (6)0.0449 (4)
C80.08136 (16)0.2771 (2)0.17851 (7)0.0489 (4)
H8A0.11780.18900.15460.059*
H8B0.00140.22940.19370.059*
C90.19303 (15)0.33459 (19)0.22971 (7)0.0447 (4)
C100.34042 (17)0.3505 (2)0.21965 (8)0.0532 (4)
C110.4897 (2)0.3269 (3)0.14769 (11)0.0870 (7)
H11A0.52010.44550.15220.130*
H11B0.48650.29090.10660.130*
H11C0.55460.25460.17410.130*
C120.16887 (15)0.37404 (19)0.28457 (7)0.0460 (4)
H120.24780.40400.31290.055*
C130.03513 (16)0.3767 (2)0.30627 (7)0.0503 (4)
C14−0.09178 (17)0.4264 (3)0.27074 (9)0.0672 (5)
H14−0.09350.46380.23130.081*
C15−0.2148 (2)0.4205 (3)0.29358 (13)0.0915 (8)
H15−0.29950.45310.26950.110*
C16−0.2125 (3)0.3667 (3)0.35192 (16)0.1059 (9)
H16−0.29630.35820.36680.127*
C17−0.0873 (3)0.3256 (3)0.38844 (14)0.1111 (9)
H17−0.08560.29310.42840.133*
C180.0351 (2)0.3325 (3)0.36579 (10)0.0784 (6)
H180.12010.30700.39100.094*
N10.00127 (14)0.84521 (17)0.04087 (6)0.0510 (3)
O10.10817 (14)0.96479 (16)0.06224 (6)0.0694 (4)
H1A0.10181.04830.03930.104*
O20.04067 (12)0.42920 (14)0.14275 (5)0.0603 (3)
O30.43880 (12)0.3942 (2)0.25704 (7)0.0802 (4)
O40.35180 (13)0.31127 (18)0.16290 (6)0.0711 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0566 (9)0.0505 (9)0.0424 (8)−0.0007 (7)−0.0024 (7)0.0057 (7)
C20.0450 (8)0.0486 (8)0.0387 (7)0.0017 (6)0.0054 (6)−0.0016 (6)
C30.0599 (10)0.0615 (10)0.0477 (9)0.0048 (8)−0.0056 (7)0.0005 (8)
C40.0548 (10)0.0810 (13)0.0565 (10)−0.0004 (9)−0.0112 (8)−0.0104 (9)
C50.0542 (10)0.0704 (11)0.0611 (11)−0.0158 (8)0.0046 (8)−0.0129 (9)
C60.0598 (10)0.0564 (10)0.0524 (9)−0.0108 (8)0.0066 (8)0.0012 (8)
C70.0429 (7)0.0521 (9)0.0388 (7)−0.0026 (6)0.0044 (6)−0.0012 (6)
C80.0527 (9)0.0446 (8)0.0472 (8)0.0008 (7)0.0028 (7)0.0060 (7)
C90.0425 (8)0.0404 (8)0.0496 (9)0.0035 (6)0.0038 (6)0.0074 (6)
C100.0487 (9)0.0499 (9)0.0610 (10)0.0058 (7)0.0096 (8)0.0053 (8)
C110.0764 (13)0.0988 (16)0.0972 (16)0.0140 (12)0.0463 (12)0.0203 (13)
C120.0402 (7)0.0468 (8)0.0478 (8)0.0013 (6)−0.0009 (6)0.0050 (7)
C130.0474 (8)0.0473 (9)0.0556 (9)−0.0004 (7)0.0074 (7)0.0001 (7)
C140.0465 (9)0.0818 (13)0.0711 (12)0.0038 (9)0.0042 (8)−0.0141 (10)
C150.0447 (10)0.0960 (17)0.134 (2)−0.0010 (10)0.0160 (12)−0.0333 (16)
C160.0896 (18)0.0783 (16)0.172 (3)−0.0038 (13)0.0828 (19)−0.0029 (17)
C170.123 (2)0.1042 (19)0.128 (2)0.0311 (17)0.0813 (19)0.0423 (17)
C180.0792 (13)0.0869 (14)0.0748 (13)0.0201 (11)0.0293 (11)0.0233 (11)
N10.0582 (8)0.0473 (8)0.0453 (7)−0.0023 (6)0.0031 (6)0.0017 (6)
O10.0836 (9)0.0544 (7)0.0620 (8)−0.0171 (6)−0.0088 (6)0.0092 (6)
O20.0628 (7)0.0523 (7)0.0563 (7)−0.0121 (5)−0.0151 (5)0.0150 (5)
O30.0425 (7)0.1103 (11)0.0870 (9)−0.0043 (7)0.0093 (6)−0.0138 (8)
O40.0638 (8)0.0893 (9)0.0651 (8)0.0080 (7)0.0243 (6)0.0060 (7)

Geometric parameters (Å, º)

C1—N11.2553 (19)C10—O41.334 (2)
C1—C21.455 (2)C11—O41.437 (2)
C1—H10.9300C11—H11A0.9600
C2—C31.388 (2)C11—H11B0.9600
C2—C71.393 (2)C11—H11C0.9600
C3—C41.369 (2)C12—C131.459 (2)
C3—H30.9300C12—H120.9300
C4—C51.369 (3)C13—C181.380 (2)
C4—H40.9300C13—C141.390 (2)
C5—C61.380 (2)C14—C151.376 (3)
C5—H50.9300C14—H140.9300
C6—C71.383 (2)C15—C161.371 (4)
C6—H60.9300C15—H150.9300
C7—O21.3604 (17)C16—C171.370 (4)
C8—O21.4356 (17)C16—H160.9300
C8—C91.495 (2)C17—C181.368 (3)
C8—H8A0.9700C17—H170.9300
C8—H8B0.9700C18—H180.9300
C9—C121.330 (2)N1—O11.4019 (17)
C9—C101.484 (2)O1—H1A0.8200
C10—O31.1976 (19)
N1—C1—C2122.37 (14)O4—C10—C9111.86 (14)
N1—C1—H1118.8O4—C11—H11A109.5
C2—C1—H1118.8O4—C11—H11B109.5
C3—C2—C7118.05 (14)H11A—C11—H11B109.5
C3—C2—C1123.16 (14)O4—C11—H11C109.5
C7—C2—C1118.78 (12)H11A—C11—H11C109.5
C4—C3—C2121.30 (16)H11B—C11—H11C109.5
C4—C3—H3119.4C9—C12—C13128.71 (14)
C2—C3—H3119.4C9—C12—H12115.6
C5—C4—C3119.87 (15)C13—C12—H12115.6
C5—C4—H4120.1C18—C13—C14118.13 (17)
C3—C4—H4120.1C18—C13—C12118.30 (15)
C4—C5—C6120.67 (16)C14—C13—C12123.54 (15)
C4—C5—H5119.7C15—C14—C13120.4 (2)
C6—C5—H5119.7C15—C14—H14119.8
C5—C6—C7119.28 (16)C13—C14—H14119.8
C5—C6—H6120.4C16—C15—C14119.9 (2)
C7—C6—H6120.4C16—C15—H15120.0
O2—C7—C6124.41 (14)C14—C15—H15120.0
O2—C7—C2114.76 (13)C17—C16—C15120.3 (2)
C6—C7—C2120.82 (13)C17—C16—H16119.9
O2—C8—C9105.98 (12)C15—C16—H16119.9
O2—C8—H8A110.5C18—C17—C16119.7 (2)
C9—C8—H8A110.5C18—C17—H17120.2
O2—C8—H8B110.5C16—C17—H17120.2
C9—C8—H8B110.5C17—C18—C13121.3 (2)
H8A—C8—H8B108.7C17—C18—H18119.3
C12—C9—C10117.02 (14)C13—C18—H18119.3
C12—C9—C8123.97 (14)C1—N1—O1112.30 (12)
C10—C9—C8119.01 (14)N1—O1—H1A109.5
O3—C10—O4122.93 (16)C7—O2—C8119.38 (12)
O3—C10—C9125.20 (16)C10—O4—C11116.56 (16)
N1—C1—C2—C3−1.8 (3)C10—C9—C12—C13177.38 (14)
N1—C1—C2—C7177.49 (15)C8—C9—C12—C13−2.3 (2)
C7—C2—C3—C40.5 (2)C9—C12—C13—C18146.92 (19)
C1—C2—C3—C4179.80 (17)C9—C12—C13—C14−35.1 (3)
C2—C3—C4—C5−1.1 (3)C18—C13—C14—C15−4.1 (3)
C3—C4—C5—C60.6 (3)C12—C13—C14—C15177.96 (17)
C4—C5—C6—C70.5 (3)C13—C14—C15—C160.5 (3)
C5—C6—C7—O2177.67 (16)C14—C15—C16—C172.7 (4)
C5—C6—C7—C2−1.1 (3)C15—C16—C17—C18−2.3 (4)
C3—C2—C7—O2−178.30 (14)C16—C17—C18—C13−1.4 (4)
C1—C2—C7—O22.4 (2)C14—C13—C18—C174.6 (3)
C3—C2—C7—C60.6 (2)C12—C13—C18—C17−177.4 (2)
C1—C2—C7—C6−178.70 (15)C2—C1—N1—O1179.94 (14)
O2—C8—C9—C1297.38 (17)C6—C7—O2—C88.8 (2)
O2—C8—C9—C10−82.28 (16)C2—C7—O2—C8−172.33 (14)
C12—C9—C10—O30.7 (2)C9—C8—O2—C7−173.35 (13)
C8—C9—C10—O3−179.59 (16)O3—C10—O4—C11−1.1 (3)
C12—C9—C10—O4−178.71 (14)C9—C10—O4—C11178.38 (15)
C8—C9—C10—O41.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.062.7836 (19)146
C15—H15···O3ii0.932.533.300 (2)140

Symmetry codes: (i) −x, −y+2, −z; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5745).

References

  • Altug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135–142. [PubMed]
  • Ates, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283–289. [PubMed]
  • Atik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293–297. [PubMed]
  • Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.
  • Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  • Govindan, E., SakthiMurugesan, K., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2753. [PMC free article] [PubMed]
  • Hwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429–1437. [PubMed]
  • Oxford Diffraction (2009). CrysAlis PROOxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Padinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215–217.
  • SakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354. [PMC free article] [PubMed]
  • Zhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography