Search tips
Search criteria 


Logo of bmcsbBioMed Centralsearchsubmit a manuscriptregisterthis articleBMC Structural Biology
BMC Struct Biol. 2012; 12: 1.
Published online 2012 January 30. doi:  10.1186/1472-6807-12-1
PMCID: PMC3293774

A transcriptional-switch model for Slr1738-controlled gene expression in the cyanobacterium Synechocystis



Protein-DNA interactions play a crucial role in the life of biological organisms in controlling transcription, regulation, as well as DNA recombination and repair. The deep understanding of these processes, which requires the atomic description of the interactions occurring between the proteins and their DNA partners is often limited by the absence of a 3D structure of such complexes.


In this study, using a method combining sequence homology, structural analogy modeling and biochemical data, we first build the 3D structure of the complex between the poorly-characterized PerR-like regulator Slr1738 and its target DNA, which controls the defences against metal and oxidative stresses in Synechocystis. In a second step, we propose an expanded version of the Slr1738-DNA structure, which accommodates the DNA binding of Slr1738 multimers, a feature likely operating in the complex Slr1738-mediated regulation of stress responses. Finally, in agreement with experimental data we present a 3D-structure of the Slr1738-DNA complex resulting from the binding of multimers of the FUR-like regulator onto its target DNA that possesses internal repeats.


Using a combination of different types of data, we build and validate a relevant model of the tridimensional structure of a biologically important protein-DNA complex. Then, based on published observations, we propose more elaborated multimeric models that may be biologically important to understand molecular mechanisms.

Articles from BMC Structural Biology are provided here courtesy of BioMed Central