PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 February 1; 68(Pt 2): o471–o472.
Published online 2012 January 21. doi:  10.1107/S1600536812001420
PMCID: PMC3275223

Ethyl 2-(1,3-benzodioxol-5-yl)-1-[3-(2-oxopyrrolidin-1-yl)prop­yl]-1H-benz­imidazole-5-carboxyl­ate

Abstract

In the title compound, C24H25N3O5, the benzimidazole and benzodioxole ring systems are each approximately planar [maximum deviations = 0.043 (1) and 0.036 (1) Å, respectively]. Their mean planes form a dihedral angle of 42.85 (4)°. The pyrrolidine ring has an envelope conformation with one of the methyl­ene C atoms forming the flap. In the crystal, weak C—H(...)O hydrogen bonds link the mol­ecules into a three-dimensional network. The crystal packing is further stabillized by weak π–π inter­actions between the benzene rings within the benzimidazole ring system [centroid–centroid distance = 3.7955 (7) Å]. A weak C—H(...)π inter­action involving the benzodioxole ring is also present.

Related literature

For the pharmacological appplications of benzimidazole derivatives, see: Grassmann et al. (2002 [triangle]); Demirayak et al. (2002 [triangle]); Evans et al. (1997 [triangle]). For ring conformation analysis, see: Cremer & Pople (1975 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]). For related structures, see: Yoon et al. (2012a [triangle],b [triangle],c [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-68-0o471-scheme1.jpg

Experimental

Crystal data

  • C24H25N3O5
  • M r = 435.47
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-0o471-efi1.jpg
  • a = 11.1692 (2) Å
  • b = 11.5498 (2) Å
  • c = 17.4607 (3) Å
  • β = 109.210 (1)°
  • V = 2127.05 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.50 × 0.49 × 0.21 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.954, T max = 0.980
  • 50292 measured reflections
  • 7050 independent reflections
  • 5762 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.134
  • S = 1.04
  • 7050 reflections
  • 290 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812001420/lh5402sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001420/lh5402Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812001420/lh5402Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grants Nos.1001/PFIZIK/811151 and 1001/PSK/8620012. The authors also wish to express their thanks to the Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malaysia.

supplementary crystallographic information

Comment

2-substituted benzimidazoles are proven important drug leads. They have therefore generated pharmacological interests (Grassmann et al., 2002; Demirayak et al., 2002; Evans et al., 1997). As part of our ongoing structural studies of benzimidazole derivatives (Yoon et al., 2012a,b,c), we now report the structure of the title compound (I).

In (I), the benzimidazole, (N1–N2/C1–C7) and benzodioxole, (O4–O5/C8–C13/C24) rings are approximately planar with a maximum deviation of 0.043 (1) Å at atom N1 and 0.036 (1) Å at atom O4, respectively. The mean plane through the benzimidazole ring makes a dihedral angle of 42.85 (4) ° with the mean plane through the benzodioxole ring. The pyrrolidine ring adopts an envelope conformation with puckering parameters, Q = 0.2094 (17) Å and [var phi] = 64.7 (4)° and atom C21 at the flap (Cremer & Pople, 1975).

In the crystal (Fig. 2), intermolecular C5—H5A···O5(x,-y+1/2,z-1/2), C15—H15B···O3(2-x,1-y,2-z), C21—H21A···O31(-x,-1/2+y,3/2-z) and C24—H24B···O3(1-x,-y,2-z) interactions link the molecules into a three-dimensional network. In addition, π–π interactions are observed which involve the benzimidazole ring system between the benzene, (C1–C6;centroid Cg1) rings with a Cg1···Cg1(2-x,1-y,2-z) distance of 3.7955 (7) Å. The crystal packing is further stabilized by weak C—H···π interactions (Table 1) involving the benzodioxole rings.

Experimental

Ethyl 3-amino-4-(3(2-oxopyrrolidin-1yl)propylamino)benzoate (0.84 mmol) and sodium metabisulfite adduct of piperonal (1.68 mmol) were dissolved in DMF. The reaction mixture was reflux at 403K for 2 hrs. After completion, the reaction mixture was diluted in ethyl acetate (20 mL) and washed with water (20 mL). The organic layer was collected, dried over Na2SO4 and the evaporated in vacuo to yield the product. The product was recrystallised from ethyl acetate.

Refinement

All the H atoms were positioned geometrically and refined using a riding-model approximation with with C–H = 0.95–0.99 Å. The Uiso values were constrained to be 1.5Ueq (methyl-H atom) and 1.2Ueq (other H atoms). The rotating model group was applied for the methyl group.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
Fig. 2.
The crystal packing, viewed along the b-axis, showing the molecules are connected into three-dimensional network. Hydrogen bonds are shown as dashed lines.

Crystal data

C24H25N3O5F(000) = 920
Mr = 435.47Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9946 reflections
a = 11.1692 (2) Åθ = 2.5–31.5°
b = 11.5498 (2) ŵ = 0.10 mm1
c = 17.4607 (3) ÅT = 100 K
β = 109.210 (1)°Block, yellow
V = 2127.05 (6) Å30.50 × 0.49 × 0.21 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer7050 independent reflections
Radiation source: fine-focus sealed tube5762 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 31.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −13→16
Tmin = 0.954, Tmax = 0.980k = −16→16
50292 measured reflectionsl = −23→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0625P)2 + 0.8818P] where P = (Fo2 + 2Fc2)/3
7050 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.36916 (8)0.64900 (8)1.00135 (6)0.02630 (19)
O21.46990 (9)0.52246 (9)1.09862 (6)0.0351 (2)
O30.53054 (11)0.16025 (9)0.79853 (8)0.0412 (3)
O40.75646 (11)−0.15864 (9)1.14027 (6)0.0373 (2)
O50.83670 (11)−0.00736 (10)1.23064 (6)0.0413 (3)
N11.08459 (9)0.25301 (8)1.08845 (5)0.01863 (18)
N20.94409 (9)0.27310 (8)0.96239 (5)0.01759 (18)
N30.68842 (9)0.06821 (9)0.76740 (6)0.0242 (2)
C11.12627 (10)0.33875 (9)1.04755 (6)0.0178 (2)
C21.23809 (11)0.40311 (10)1.07214 (6)0.0198 (2)
H2A1.30050.39101.12370.024*
C31.25516 (11)0.48569 (9)1.01862 (7)0.0201 (2)
C41.16207 (11)0.50423 (10)0.94229 (7)0.0215 (2)
H4A1.17450.56400.90830.026*
C51.05304 (11)0.43769 (10)0.91560 (7)0.0209 (2)
H5A0.99150.44870.86360.025*
C61.03832 (10)0.35349 (9)0.96927 (6)0.01764 (19)
C70.97710 (10)0.21525 (9)1.03573 (6)0.01711 (19)
C80.90606 (10)0.11885 (9)1.05532 (6)0.01784 (19)
C90.85386 (11)0.02908 (10)1.00098 (7)0.0210 (2)
H9A0.85480.03440.94690.025*
C100.80006 (11)−0.06882 (10)1.02441 (7)0.0235 (2)
H10A0.7655−0.13020.98760.028*
C110.79959 (11)−0.07201 (10)1.10277 (7)0.0230 (2)
C120.84914 (11)0.01780 (11)1.15672 (7)0.0231 (2)
C130.90412 (11)0.11341 (10)1.13575 (7)0.0207 (2)
H13A0.93940.17341.17370.025*
C141.37606 (12)0.55209 (10)1.04449 (7)0.0231 (2)
C151.48387 (12)0.71957 (11)1.02515 (8)0.0285 (3)
H15A1.55510.67611.01690.034*
H15B1.50760.74131.08310.034*
C161.45570 (18)0.82402 (18)0.97368 (14)0.0613 (6)
H16A1.52900.87620.99020.092*
H16B1.38170.86360.97980.092*
H16C1.43770.80170.91680.092*
C170.83289 (10)0.25829 (10)0.88998 (6)0.0194 (2)
H17A0.79360.33480.87200.023*
H17B0.76970.20930.90340.023*
C180.86814 (11)0.20207 (12)0.82103 (7)0.0253 (2)
H18A0.92100.25620.80200.030*
H18B0.91860.13130.84130.030*
C190.74954 (12)0.17057 (12)0.75023 (7)0.0282 (3)
H19A0.68920.23620.73900.034*
H19B0.77330.15700.70110.034*
C200.72393 (14)−0.04871 (14)0.75131 (11)0.0436 (4)
H20A0.8155−0.06270.77910.052*
H20B0.7041−0.06170.69240.052*
C210.64389 (16)−0.12635 (13)0.78542 (12)0.0522 (5)
H21A0.6121−0.19400.74970.063*
H21B0.6939−0.15440.84020.063*
C220.53501 (15)−0.05070 (12)0.78894 (9)0.0363 (3)
H22A0.4576−0.06640.74230.044*
H22B0.5162−0.06420.83980.044*
C230.58101 (12)0.07147 (11)0.78574 (7)0.0249 (2)
C240.77364 (13)−0.11782 (12)1.22069 (8)0.0297 (3)
H24A0.8254−0.17361.26110.036*
H24B0.6904−0.10961.22880.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0228 (4)0.0255 (4)0.0303 (4)−0.0072 (3)0.0083 (3)0.0011 (3)
O20.0270 (5)0.0331 (5)0.0367 (5)−0.0086 (4)−0.0010 (4)0.0027 (4)
O30.0344 (6)0.0334 (5)0.0616 (7)0.0032 (4)0.0238 (5)−0.0088 (5)
O40.0471 (6)0.0343 (5)0.0314 (5)−0.0208 (5)0.0142 (4)−0.0004 (4)
O50.0557 (7)0.0490 (6)0.0199 (4)−0.0313 (5)0.0135 (4)−0.0020 (4)
N10.0190 (4)0.0193 (4)0.0163 (4)−0.0022 (3)0.0041 (3)−0.0008 (3)
N20.0172 (4)0.0206 (4)0.0138 (4)−0.0022 (3)0.0035 (3)−0.0012 (3)
N30.0183 (4)0.0263 (5)0.0240 (5)0.0014 (4)0.0014 (4)−0.0073 (4)
C10.0186 (5)0.0187 (4)0.0157 (4)−0.0011 (4)0.0051 (4)−0.0018 (3)
C20.0195 (5)0.0209 (5)0.0173 (5)−0.0017 (4)0.0037 (4)−0.0025 (4)
C30.0204 (5)0.0197 (5)0.0208 (5)−0.0036 (4)0.0078 (4)−0.0036 (4)
C40.0241 (5)0.0222 (5)0.0196 (5)−0.0022 (4)0.0092 (4)0.0010 (4)
C50.0211 (5)0.0241 (5)0.0168 (5)−0.0013 (4)0.0052 (4)0.0010 (4)
C60.0171 (5)0.0194 (4)0.0163 (4)−0.0017 (4)0.0053 (4)−0.0020 (4)
C70.0180 (5)0.0182 (4)0.0149 (4)−0.0002 (4)0.0051 (4)−0.0014 (3)
C80.0163 (4)0.0200 (5)0.0168 (4)−0.0012 (4)0.0048 (4)−0.0009 (4)
C90.0215 (5)0.0233 (5)0.0193 (5)−0.0024 (4)0.0081 (4)−0.0041 (4)
C100.0232 (5)0.0222 (5)0.0259 (5)−0.0046 (4)0.0092 (4)−0.0061 (4)
C110.0195 (5)0.0233 (5)0.0254 (5)−0.0043 (4)0.0062 (4)0.0012 (4)
C120.0224 (5)0.0288 (6)0.0168 (5)−0.0061 (4)0.0047 (4)0.0009 (4)
C130.0200 (5)0.0245 (5)0.0165 (4)−0.0050 (4)0.0045 (4)−0.0019 (4)
C140.0242 (5)0.0221 (5)0.0242 (5)−0.0045 (4)0.0094 (4)−0.0040 (4)
C150.0238 (6)0.0273 (6)0.0345 (6)−0.0083 (5)0.0097 (5)−0.0031 (5)
C160.0378 (9)0.0587 (11)0.0704 (12)−0.0228 (8)−0.0052 (8)0.0337 (10)
C170.0162 (5)0.0259 (5)0.0143 (4)−0.0013 (4)0.0027 (4)−0.0016 (4)
C180.0206 (5)0.0383 (6)0.0175 (5)−0.0066 (5)0.0069 (4)−0.0073 (4)
C190.0254 (6)0.0418 (7)0.0159 (5)−0.0068 (5)0.0047 (4)−0.0046 (5)
C200.0256 (6)0.0396 (8)0.0529 (9)0.0102 (6)−0.0042 (6)−0.0242 (7)
C210.0411 (8)0.0223 (6)0.0667 (11)0.0032 (6)−0.0181 (8)−0.0037 (7)
C220.0425 (8)0.0291 (6)0.0320 (7)−0.0088 (6)0.0053 (6)0.0026 (5)
C230.0251 (6)0.0255 (5)0.0227 (5)0.0001 (4)0.0062 (4)−0.0014 (4)
C240.0274 (6)0.0341 (6)0.0250 (6)−0.0085 (5)0.0054 (5)0.0079 (5)

Geometric parameters (Å, °)

O1—C141.3373 (15)C10—C111.3704 (17)
O1—C151.4588 (15)C10—H10A0.9500
O2—C141.2071 (15)C11—C121.3880 (17)
O3—C231.2256 (16)C12—C131.3706 (16)
O4—C111.3672 (14)C13—H13A0.9500
O4—C241.4330 (17)C15—C161.475 (2)
O5—C121.3738 (14)C15—H15A0.9900
O5—C241.4399 (16)C15—H15B0.9900
N1—C71.3235 (14)C16—H16A0.9800
N1—C11.3878 (14)C16—H16B0.9800
N2—C61.3788 (14)C16—H16C0.9800
N2—C71.3825 (14)C17—C181.5290 (16)
N2—C171.4618 (14)C17—H17A0.9900
N3—C231.3402 (16)C17—H17B0.9900
N3—C191.4450 (17)C18—C191.5289 (17)
N3—C201.4606 (17)C18—H18A0.9900
C1—C21.3943 (15)C18—H18B0.9900
C1—C61.4067 (15)C19—H19A0.9900
C2—C31.3916 (16)C19—H19B0.9900
C2—H2A0.9500C20—C211.519 (3)
C3—C41.4112 (16)C20—H20A0.9900
C3—C141.4880 (16)C20—H20B0.9900
C4—C51.3847 (16)C21—C221.515 (2)
C4—H4A0.9500C21—H21A0.9900
C5—C61.3971 (15)C21—H21B0.9900
C5—H5A0.9500C22—C231.5090 (18)
C7—C81.4714 (15)C22—H22A0.9900
C8—C91.3968 (15)C22—H22B0.9900
C8—C131.4130 (15)C24—H24A0.9900
C9—C101.4031 (16)C24—H24B0.9900
C9—H9A0.9500
C14—O1—C15115.14 (10)O1—C15—H15B110.3
C11—O4—C24105.89 (10)C16—C15—H15B110.3
C12—O5—C24105.71 (10)H15A—C15—H15B108.6
C7—N1—C1104.97 (9)C15—C16—H16A109.5
C6—N2—C7106.35 (9)C15—C16—H16B109.5
C6—N2—C17124.13 (9)H16A—C16—H16B109.5
C7—N2—C17129.52 (9)C15—C16—H16C109.5
C23—N3—C19123.21 (11)H16A—C16—H16C109.5
C23—N3—C20113.14 (12)H16B—C16—H16C109.5
C19—N3—C20122.67 (12)N2—C17—C18111.41 (9)
N1—C1—C2129.80 (10)N2—C17—H17A109.3
N1—C1—C6109.95 (9)C18—C17—H17A109.3
C2—C1—C6120.20 (10)N2—C17—H17B109.3
C3—C2—C1117.74 (10)C18—C17—H17B109.3
C3—C2—H2A121.1H17A—C17—H17B108.0
C1—C2—H2A121.1C19—C18—C17111.01 (10)
C2—C3—C4121.13 (10)C19—C18—H18A109.4
C2—C3—C14117.42 (10)C17—C18—H18A109.4
C4—C3—C14121.44 (10)C19—C18—H18B109.4
C5—C4—C3121.78 (10)C17—C18—H18B109.4
C5—C4—H4A119.1H18A—C18—H18B108.0
C3—C4—H4A119.1N3—C19—C18111.70 (10)
C4—C5—C6116.43 (10)N3—C19—H19A109.3
C4—C5—H5A121.8C18—C19—H19A109.3
C6—C5—H5A121.8N3—C19—H19B109.3
N2—C6—C5131.70 (10)C18—C19—H19B109.3
N2—C6—C1105.79 (9)H19A—C19—H19B107.9
C5—C6—C1122.50 (10)N3—C20—C21103.78 (13)
N1—C7—N2112.92 (9)N3—C20—H20A111.0
N1—C7—C8121.52 (9)C21—C20—H20A111.0
N2—C7—C8125.53 (9)N3—C20—H20B111.0
C9—C8—C13120.17 (10)C21—C20—H20B111.0
C9—C8—C7122.70 (10)H20A—C20—H20B109.0
C13—C8—C7116.78 (9)C22—C21—C20105.03 (12)
C8—C9—C10121.55 (10)C22—C21—H21A110.7
C8—C9—H9A119.2C20—C21—H21A110.7
C10—C9—H9A119.2C22—C21—H21B110.7
C11—C10—C9117.10 (10)C20—C21—H21B110.7
C11—C10—H10A121.5H21A—C21—H21B108.8
C9—C10—H10A121.5C23—C22—C21104.48 (13)
O4—C11—C10127.99 (11)C23—C22—H22A110.9
O4—C11—C12110.28 (10)C21—C22—H22A110.9
C10—C11—C12121.72 (11)C23—C22—H22B110.9
C13—C12—O5127.89 (11)C21—C22—H22B110.9
C13—C12—C11122.30 (11)H22A—C22—H22B108.9
O5—C12—C11109.79 (10)O3—C23—N3124.65 (12)
C12—C13—C8117.14 (10)O3—C23—C22126.37 (13)
C12—C13—H13A121.4N3—C23—C22108.97 (11)
C8—C13—H13A121.4O4—C24—O5108.19 (10)
O2—C14—O1123.55 (11)O4—C24—H24A110.1
O2—C14—C3123.99 (11)O5—C24—H24A110.1
O1—C14—C3112.46 (10)O4—C24—H24B110.1
O1—C15—C16106.98 (12)O5—C24—H24B110.1
O1—C15—H15A110.3H24A—C24—H24B108.4
C16—C15—H15A110.3
C7—N1—C1—C2−175.77 (11)C24—O5—C12—C13−179.43 (13)
C7—N1—C1—C61.68 (12)C24—O5—C12—C11−1.18 (15)
N1—C1—C2—C3−179.21 (11)O4—C11—C12—C13177.00 (12)
C6—C1—C2—C33.56 (16)C10—C11—C12—C13−1.6 (2)
C1—C2—C3—C40.43 (16)O4—C11—C12—O5−1.37 (15)
C1—C2—C3—C14−178.59 (10)C10—C11—C12—O5180.00 (12)
C2—C3—C4—C5−3.24 (18)O5—C12—C13—C8179.51 (13)
C14—C3—C4—C5175.73 (11)C11—C12—C13—C81.46 (18)
C3—C4—C5—C61.83 (17)C9—C8—C13—C12−0.24 (17)
C7—N2—C6—C5−177.75 (12)C7—C8—C13—C12−173.63 (10)
C17—N2—C6—C51.48 (18)C15—O1—C14—O2−1.08 (18)
C7—N2—C6—C10.87 (12)C15—O1—C14—C3178.54 (10)
C17—N2—C6—C1−179.90 (10)C2—C3—C14—O217.46 (18)
C4—C5—C6—N2−179.30 (11)C4—C3—C14—O2−161.55 (12)
C4—C5—C6—C12.27 (17)C2—C3—C14—O1−162.16 (10)
N1—C1—C6—N2−1.60 (12)C4—C3—C14—O118.83 (16)
C2—C1—C6—N2176.14 (10)C14—O1—C15—C16−177.39 (14)
N1—C1—C6—C5177.18 (10)C6—N2—C17—C1872.07 (14)
C2—C1—C6—C5−5.09 (17)C7—N2—C17—C18−108.89 (13)
C1—N1—C7—N2−1.14 (12)N2—C17—C18—C19171.60 (10)
C1—N1—C7—C8176.98 (10)C23—N3—C19—C18105.15 (13)
C6—N2—C7—N10.17 (12)C20—N3—C19—C18−86.92 (14)
C17—N2—C7—N1−179.00 (10)C17—C18—C19—N3−75.98 (14)
C6—N2—C7—C8−177.86 (10)C23—N3—C20—C21−15.83 (15)
C17—N2—C7—C82.97 (18)C19—N3—C20—C21175.15 (11)
N1—C7—C8—C9−135.87 (12)N3—C20—C21—C2221.08 (15)
N2—C7—C8—C942.00 (16)C20—C21—C22—C23−19.27 (16)
N1—C7—C8—C1337.34 (15)C19—N3—C23—O3−8.2 (2)
N2—C7—C8—C13−144.79 (11)C20—N3—C23—O3−177.18 (14)
C13—C8—C9—C10−0.85 (17)C19—N3—C23—C22172.53 (11)
C7—C8—C9—C10172.14 (11)C20—N3—C23—C223.57 (15)
C8—C9—C10—C110.72 (18)C21—C22—C23—O3−168.92 (15)
C24—O4—C11—C10−178.17 (13)C21—C22—C23—N310.31 (15)
C24—O4—C11—C123.30 (14)C11—O4—C24—O5−3.98 (15)
C9—C10—C11—O4−177.89 (12)C12—O5—C24—O43.19 (15)
C9—C10—C11—C120.49 (18)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O5i0.952.493.4324 (15)172
C15—H15B···O3ii0.992.523.4288 (18)153
C21—H21A···O3iii0.992.283.184 (2)151
C24—H24B···O3iv0.992.433.338 (2)153
C16—H16B···Cgii0.982.803.702 (2)154

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, −y+1, −z+2; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5402).

References

  • Bruker (2009). APEX2, SAINT and SADABSBruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  • Demirayak, S., Mohsen, U. A. & Karaburun, A. C. (2002). Eur. J. Med. Chem. 37, 255–260. [PubMed]
  • Evans, T. M., Gardiner, J. M., Mahmood, N. & Smis, M. (1997). Bioorg. Med. Chem. Lett. 7, 409–412.
  • Grassmann, S., Sadek, B., Ligneau, X., Elz, S., Ganellin, C. R., Arrang, J. M., Schwartz, J. C., Stark, H. & Schunack, W. (2002). Eur. J. Pharm. Sci. 15, 367–378. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yoon, Y. K., Ali, M. A., Choon, T. S., Asik, S. I. J. & Razak, I. A. (2012a). Acta Cryst. E68, o247–o248. [PMC free article] [PubMed]
  • Yoon, Y. K., Ali, M. A., Choon, T. S., Asik, S. I. J. & Razak, I. A. (2012b). Acta Cryst. E68, o87–o88. [PMC free article] [PubMed]
  • Yoon, Y. K., Ali, M. A., Choon, T. S., Asik, S. I. J. & Razak, I. A. (2012c). Acta Cryst. E68, o59. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography