PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 February 1; 68(Pt 2): o306.
Published online 2012 January 7. doi:  10.1107/S160053681200013X
PMCID: PMC3274999

2-[(2,4,4,6,6-Penta­chloro-1,3,5,2λ5,4λ5,6λ5-triaza­triphosphinin-2-yl)aza­nid­yl]pyridinium

Abstract

The title compound, C5H5Cl5N5P3, crystallizes as a zwitterion in which the pyridine N atom is protonated. An S(6) ring motif is formed via an intra­molecular C—H(...)N hydrogen bond. The triaza­triphosphinine ring adopts an envelope conformation, with one N atom displaced by 0.145 (1) Å from the other atoms. In the crystal, N—H(...)N and C—H(...)N hydrogen bonds link the mol­ecules into centrosymmetric dimers containing one R 2 2(7) ring motif and two R 2 2(8) ring motifs.

Related literature

For background to the reactions of hexa­chloro­cyclo­triphosphazene, see: Polder & Wagner (1976 [triangle]). For a related structure, see: Coles et al. (2007 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-0o306-scheme1.jpg

Experimental

Crystal data

  • C5H5Cl5N5P3
  • M r = 405.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-68-0o306-efi1.jpg
  • a = 8.8677 (1) Å
  • b = 14.7225 (2) Å
  • c = 12.3564 (2) Å
  • β = 119.355 (1)°
  • V = 1406.05 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.36 mm−1
  • T = 100 K
  • 0.59 × 0.38 × 0.36 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.499, T max = 0.640
  • 19432 measured reflections
  • 5116 independent reflections
  • 4806 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.061
  • S = 1.09
  • 5116 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681200013X/hb6587sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200013X/hb6587Isup2.hkl

Supplementary material file. DOI: 10.1107/S160053681200013X/hb6587Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Tikrit for research leave (for SSA) and Universiti Sains Malaysia (USM) for the Research University Fund (1001/PKIMIA/811157) and RU grant (1001/PKIMIA/813023) (to RAH and ZZH). HKF and WSL thank USM for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Hexachlorocyclotriphosphazene is an inorganic six-membered cyclic compound consisting of alternating phosphorous and nitrogen atoms. It can also be considered as a trimer of azaphosphoryldichloride (NPCl2), which can be readily formed by the reaction of phosphorous pentachloride and ammonium chloride in chlorobenzene. The results of the reaction of phosphazene derivatives with nucleophile reagent strongly depend on reaction conditions whereas a series of various substitution derivatives can be formed (e.g. Polder & Wagner, 1976).

The title compound (Fig. 1), crystallizes as a zwitterion in which the pyridine N atom is protonated. An S(6) ring motif is formed via an intramolecular C2—H2A···N3 hydrogen bond (Table 1). The triazatriphosphinine ring (P1/N2/P2/N3/P3/N1) adopts an envelope conformation with the puckering parameters (Cremer & Pople, 1975), Q = 0.2087 Å; Θ = 138.0 (2)°; [var phi] = 3.7 (4)° and it is comparable to a related stucture (Coles et al., 2007). In the crystal (Fig. 2), N5—H1···N4 and C5—H5A···N1 hydrogen bonds (Table 1) link the molecules to form one R22(7) ring motif and two R22(8) ring motifs.

Experimental

Hexachlorocyclotriphosphazene (0.5 g, 0.07 mol), 2-aminopyridine (0.26 g, 0.14 mol) and triethyl amine (0.14 g, 0.07 mol) were stirred in acetone at -80°C in liquid nitrogen bath for 5 h under anhydrous conditions. The obtained triethylammoniumchloride was filtered off under nitrogen and washed with fresh acetone and the solvent reduced to the minimum. Further, 10 ml of dried acetone was added the yield of the title product after deep freezing crystalization was about 60–66%. Colourless blocks were obtained by the slow evaporation of solvent at freezing temperature of acetone. M.p.: 455 K.

Refinement

The N-bound hydrogen atom was located from the difference Fourier map and was fixed at their found positions with a riding model with Uiso(H) = 1.2 Ueq(N) [N–H= 0.8354 Å]. The remaining hydrogen atoms were positioned geometrically and were refined with a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.93 Å]. Four outliners were omitted for the final refinement, 3 16 4, 3 19 6, -3 16 7 and -3 19 9.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C5H5Cl5N5P3F(000) = 800
Mr = 405.30Dx = 1.915 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9860 reflections
a = 8.8677 (1) Åθ = 2.4–32.6°
b = 14.7225 (2) ŵ = 1.36 mm1
c = 12.3564 (2) ÅT = 100 K
β = 119.355 (1)°Block, colourless
V = 1406.05 (3) Å30.59 × 0.38 × 0.36 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer5116 independent reflections
Radiation source: fine-focus sealed tube4806 reflections with I > 2σ(I)
graphiteRint = 0.017
[var phi] and ω scansθmax = 32.6°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −11→13
Tmin = 0.499, Tmax = 0.640k = −22→19
19432 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0211P)2 + 1.0751P] where P = (Fo2 + 2Fc2)/3
5116 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.37616 (5)0.29414 (2)0.46163 (3)0.02552 (7)
Cl21.44578 (4)0.19325 (3)0.27089 (3)0.02419 (7)
Cl30.89064 (4)0.22782 (2)−0.05598 (3)0.02220 (7)
Cl40.77111 (4)0.35825 (2)0.08438 (3)0.02138 (6)
Cl50.99461 (4)−0.00326 (2)0.13895 (3)0.01986 (6)
P11.25273 (4)0.22143 (2)0.30552 (3)0.01580 (6)
P20.92671 (4)0.25229 (2)0.11553 (3)0.01506 (6)
P30.99248 (4)0.09616 (2)0.25490 (3)0.01336 (6)
N11.18802 (13)0.13083 (8)0.33652 (9)0.01774 (19)
N21.12016 (15)0.28591 (8)0.19854 (10)0.0216 (2)
N30.85908 (13)0.17106 (8)0.16243 (9)0.01651 (18)
N40.93798 (13)0.04813 (7)0.34645 (9)0.01398 (17)
N50.75893 (13)−0.03097 (7)0.39730 (9)0.01419 (17)
H10.8457−0.03600.46770.017*
C10.78001 (15)0.01276 (8)0.30878 (10)0.01275 (18)
C20.63220 (16)0.01682 (9)0.18857 (10)0.0171 (2)
H2A0.63940.04590.12440.021*
C30.47895 (16)−0.02188 (10)0.16644 (11)0.0200 (2)
H3A0.3833−0.01900.08730.024*
C40.46472 (16)−0.06569 (10)0.26157 (11)0.0212 (2)
H4A0.3608−0.09160.24690.025*
C50.60793 (16)−0.06919 (9)0.37649 (11)0.0190 (2)
H5A0.6018−0.09810.44120.023*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.02946 (16)0.02404 (16)0.01697 (12)−0.00508 (12)0.00667 (11)−0.00396 (11)
Cl20.02044 (14)0.03211 (18)0.02312 (13)−0.00176 (12)0.01309 (11)0.00253 (12)
Cl30.02719 (15)0.02464 (15)0.01649 (12)−0.00050 (12)0.01203 (11)0.00132 (10)
Cl40.02328 (14)0.01568 (13)0.02180 (13)0.00245 (10)0.00843 (11)0.00085 (10)
Cl50.02308 (14)0.02248 (15)0.01536 (11)0.00251 (11)0.01046 (10)−0.00064 (10)
P10.01431 (13)0.01830 (15)0.01237 (12)−0.00312 (11)0.00467 (10)0.00161 (10)
P20.01528 (13)0.01473 (14)0.01295 (12)−0.00074 (10)0.00522 (10)0.00284 (10)
P30.01322 (12)0.01484 (14)0.01122 (11)−0.00054 (10)0.00537 (9)0.00243 (9)
N10.0139 (4)0.0200 (5)0.0156 (4)−0.0022 (4)0.0043 (3)0.0049 (4)
N20.0172 (5)0.0210 (5)0.0194 (4)−0.0042 (4)0.0035 (4)0.0070 (4)
N30.0144 (4)0.0170 (5)0.0160 (4)0.0001 (4)0.0058 (3)0.0054 (3)
N40.0145 (4)0.0157 (4)0.0117 (4)−0.0018 (3)0.0063 (3)0.0015 (3)
N50.0137 (4)0.0160 (5)0.0116 (4)−0.0016 (3)0.0053 (3)0.0008 (3)
C10.0149 (5)0.0120 (5)0.0117 (4)0.0001 (4)0.0067 (4)−0.0003 (3)
C20.0157 (5)0.0227 (6)0.0115 (4)−0.0004 (4)0.0055 (4)0.0017 (4)
C30.0157 (5)0.0275 (6)0.0135 (4)−0.0016 (5)0.0045 (4)0.0007 (4)
C40.0156 (5)0.0282 (7)0.0172 (5)−0.0055 (5)0.0059 (4)0.0005 (4)
C50.0172 (5)0.0228 (6)0.0162 (5)−0.0041 (4)0.0075 (4)0.0028 (4)

Geometric parameters (Å, °)

Cl1—P11.9987 (4)N4—C11.3456 (15)
Cl2—P12.0011 (5)N5—C51.3558 (16)
Cl3—P22.0146 (4)N5—C11.3589 (14)
Cl4—P21.9912 (5)N5—H10.8354
Cl5—P32.0548 (4)C1—C21.4209 (15)
P1—N11.5719 (11)C2—C31.3718 (18)
P1—N21.5834 (11)C2—H2A0.9300
P2—N31.5705 (11)C3—C41.3996 (18)
P2—N21.5858 (11)C3—H3A0.9300
P3—N41.5967 (10)C4—C51.3652 (17)
P3—N11.6031 (11)C4—H4A0.9300
P3—N31.6111 (11)C5—H5A0.9300
N1—P1—N2120.13 (6)P2—N3—P3120.16 (7)
N1—P1—Cl1108.18 (4)C1—N4—P3123.48 (8)
N2—P1—Cl1108.41 (5)C5—N5—C1123.83 (10)
N1—P1—Cl2109.20 (5)C5—N5—H1118.7
N2—P1—Cl2107.98 (5)C1—N5—H1117.4
Cl1—P1—Cl2101.32 (2)N4—C1—N5115.82 (10)
N3—P2—N2119.12 (6)N4—C1—C2128.01 (10)
N3—P2—Cl4108.31 (4)N5—C1—C2116.17 (10)
N2—P2—Cl4107.93 (5)C3—C2—C1120.46 (11)
N3—P2—Cl3111.07 (4)C3—C2—H2A119.8
N2—P2—Cl3107.45 (5)C1—C2—H2A119.8
Cl4—P2—Cl3101.487 (19)C2—C3—C4120.82 (11)
N4—P3—N1107.76 (5)C2—C3—H3A119.6
N4—P3—N3115.69 (6)C4—C3—H3A119.6
N1—P3—N3114.83 (6)C5—C4—C3118.04 (12)
N4—P3—Cl5106.73 (4)C5—C4—H4A121.0
N1—P3—Cl5106.78 (5)C3—C4—H4A121.0
N3—P3—Cl5104.34 (4)N5—C5—C4120.68 (11)
P1—N1—P3121.89 (7)N5—C5—H5A119.7
P1—N2—P2118.55 (7)C4—C5—H5A119.7
N2—P1—N1—P35.48 (12)N1—P3—N3—P224.81 (10)
Cl1—P1—N1—P3130.57 (7)Cl5—P3—N3—P2−91.71 (7)
Cl2—P1—N1—P3−119.97 (7)N1—P3—N4—C1178.60 (10)
N4—P3—N1—P1−144.81 (8)N3—P3—N4—C148.55 (12)
N3—P3—N1—P1−14.28 (11)Cl5—P3—N4—C1−67.03 (10)
Cl5—P3—N1—P1100.84 (8)P3—N4—C1—N5175.77 (9)
N1—P1—N2—P2−6.08 (12)P3—N4—C1—C2−5.33 (18)
Cl1—P1—N2—P2−131.06 (7)C5—N5—C1—N4178.77 (12)
Cl2—P1—N2—P2119.94 (7)C5—N5—C1—C2−0.27 (18)
N3—P2—N2—P116.53 (12)N4—C1—C2—C3−178.84 (13)
Cl4—P2—N2—P1140.46 (7)N5—C1—C2—C30.06 (18)
Cl3—P2—N2—P1−110.81 (8)C1—C2—C3—C40.3 (2)
N2—P2—N3—P3−26.66 (11)C2—C3—C4—C5−0.4 (2)
Cl4—P2—N3—P3−150.41 (6)C1—N5—C5—C40.1 (2)
Cl3—P2—N3—P398.96 (7)C3—C4—C5—N50.2 (2)
N4—P3—N3—P2151.37 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H1···N4i0.842.162.9949 (14)177
C2—H2A···N30.932.553.1538 (19)123
C5—H5A···N1i0.932.503.2220 (16)135

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6587).

References

  • Bruker (2009). APEX2, SAINT and SADABSBruker AXS Inc., Madison, Wisconsin, USA.
  • Coles, S. J., Davies, D. B., Hursthouse, M. B., İbişoğlu, H., Kılıç, A. & Shaw, R. A. (2007). Acta Cryst. E63, o3753.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  • Polder, W. & Wagner, A. J. (1976). Cryst. Struct. Commun. 5, 253–257.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography