PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2012 February 1; 68(Pt 2): m191–m192.
Published online 2012 January 21. doi:  10.1107/S1600536812001754
PMCID: PMC3274914

Bis[(1S,1′S)-1,1′-(4-amino-4H-1,2,4-triazole-3,5-di­yl)diethanol-κN 1]bis­(nitrato-κO)zinc

Abstract

In the title homochiral mononuclear compound, [Zn(NO3)2(C6H12N4O2)2], the ZnII atom is located on a twofold rotation axis and coordinated by two N atoms from two ligands and two O atoms from two NO3 anions, adopting a distorted tetra­hedral coordination geometry. The compound is enanti­omerically pure and corresponds to the S diastereoisomer, with the optical activity originating from the chiral ligand. In the crystal, mol­ecules are connected into three-dimensional supra­molecular networks through O—H(...)O, O—H(...)N and N—H(...)O hydrogen bonds.

Related literature

For 4-amino-4H-1,2,4-triazole transition metal complexes, see: Zhai et al. (2006 [triangle]); Yi et al. (2004 [triangle]). For the non-linear optical properties of chiral coordination compounds, see: Evans & Lin (2002 [triangle]). For uses of chiral coordination compounds, see: Hang et al. (2011 [triangle]); Lin (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-68-0m191-scheme1.jpg

Experimental

Crystal data

  • [Zn(NO3)2(C6H12N4O2)2]
  • M r = 533.78
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-68-0m191-efi1.jpg
  • a = 12.1252 (7) Å
  • c = 14.6108 (17) Å
  • V = 2148.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.22 mm−1
  • T = 298 K
  • 0.36 × 0.18 × 0.12 mm

Data collection

  • Bruker APEX DUO diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.767, T max = 0.862
  • 7446 measured reflections
  • 2463 independent reflections
  • 2154 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.088
  • S = 1.05
  • 2463 reflections
  • 154 parameters
  • 378 restraints
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.23 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 993 Friedel pairs
  • Flack parameter: −0.022 (15)

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus (Bruker, 2000 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg & Putz, 2007 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812001754/ff2051sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812001754/ff2051Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Yuan Deng for collecting the X-ray crystal data. We are also grateful to the National Natural Science Foundation of China (21101048), the Qianjiang Talent Projects of Zhejiang Province (2011R10091), the Education Office of Zhejiang Province (201065XP139) and Hangzhou Normal University (HSKQ0007) for financial support.

supplementary crystallographic information

Comment

Chiral coordination complexes have received considerable attention due to their potential applications in the area of ferroelectrics, enantiopure catalysis and separation (Hang et al., 2011; Lin et al., 2010). Among the different approaches to synthesize chiral coordination compounds, the most effective synthetic strategy is to use optically pure chiral ligands. Herein, we report a chiral zinc coordination compound (S)-[Zn(deoatrz)2(NO3)2], by using an enantiopure (1S,1'S)-1,1'-(4-amino-4H-1,2,4-triazole-3,5-diyl)diethanol (deoatrz), reacting with zinc salts. Furthermore, its structure is characterized.

Single crystal structural analysis reveals that the title compound crystallizes in the tetragonal system, chiral space group P41212. The title compound is a mononuclear and its asymmetric unit consists of one Zn atom, two deoatrz ligands and two NO3– anions (Fig. 1). The Zn atom is coordinated by two N atoms (N1, N1A) from two deoatrz ligands and two NO3– anions (O3, O3A), adopting a distorted tetrahedral coordination geometry. The Zn—O and Zn—N bond lengths are 2.071 (2) and 2.024 (1) Å, respectively. The bond angles around Zn atom vary from 95.9 (8) to 143.5 (1)o.

As shown in Fig. 2, the interesting H-bonds are observed in the title compound. The fundamentally units are one dimensional chiral hydrogen bond chains along c axis, and subsequently the chains are connected into three-dimensional chiral supramolecular networks through O—H···O, O—H···N and N—H···O hydrogen bond interactions.

Experimental

An 10 ml ethanol solution of (1S,1'S)-1,1'-(4-amino-4H-1,2,4-triazole -3,5-diyl)diethanol (0.2 mmol, 0.0344 g) and Zn(NO3)2.6H2O (0.10 mmol, 0.0298 g) was stirred for five minutes and then filtered. The filtrate was carefully layered with 10 ml ethyl ether. After one week, colorless needle-like crystals of the title compound were obtained. Yield: 45%.

Refinement

All H atoms were put in calculated positions. All H atoms were refined with Uiso(H) = 1.2Ueq(N and O) and Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.
Coordination geometry of Znic in the title compound with atomic labeling scheme. Thermal ellipsoids are at the 30% probability level. All H atoms except those attached to O and N atoms are omitted for clarity.
Fig. 2.
The hydrogen-bonded chains in the title compound along the c axis.
Fig. 3.
Three dimensional hydrogen-bonded supramolecular networks in the title compound Viewed from c dimension.

Crystal data

[Zn(NO3)2(C6H12N4O2)2]Dx = 1.651 Mg m3
Mr = 533.78Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 7446 reflections
Hall symbol: P 4abw 2nwθ = 1.7–27.5°
a = 12.1252 (7) ŵ = 1.22 mm1
c = 14.6108 (17) ÅT = 298 K
V = 2148.1 (3) Å3Needle, colourless
Z = 40.36 × 0.18 × 0.12 mm
F(000) = 1104

Data collection

Bruker APEX DUO diffractometer2463 independent reflections
Radiation source: fine-focus sealed tube2154 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −15→9
Tmin = 0.767, Tmax = 0.862k = −15→13
7446 measured reflectionsl = −18→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.088w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2512P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2463 reflectionsΔρmax = 0.32 e Å3
154 parametersΔρmin = −0.23 e Å3
378 restraintsAbsolute structure: Flack (1983), 993 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.022 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.92340 (3)0.92340 (3)1.00000.03222 (13)
O10.72436 (18)0.90461 (18)0.95521 (12)0.0417 (5)
H10.70210.84930.98170.063*
O21.13628 (15)0.75723 (17)0.67187 (13)0.0336 (4)
H21.14790.82350.67770.050*
O31.09002 (17)0.89583 (19)1.02136 (13)0.0464 (5)
O41.0802 (3)1.0273 (3)1.1173 (3)0.1176 (14)
O51.2371 (2)0.9742 (3)1.0727 (2)0.0758 (9)
N10.91797 (19)0.85483 (18)0.87379 (13)0.0285 (5)
N21.00505 (19)0.81575 (19)0.82025 (13)0.0279 (5)
N30.84957 (17)0.80180 (17)0.74473 (15)0.0271 (4)
N40.7738 (2)0.7823 (2)0.67330 (16)0.0427 (6)
H4B0.79280.72080.64400.064*
H4C0.77530.83880.63450.064*
N51.1372 (2)0.9678 (2)1.07029 (17)0.0417 (6)
C10.8266 (2)0.8474 (2)0.82697 (16)0.0273 (5)
C20.9608 (2)0.7841 (2)0.74215 (16)0.0262 (5)
C30.7171 (2)0.8883 (2)0.85876 (17)0.0332 (6)
H30.65950.83430.84460.040*
C40.6903 (3)0.9988 (3)0.8141 (2)0.0467 (8)
H4D0.62161.02610.83770.070*
H4E0.68440.98920.74900.070*
H4F0.74791.05070.82740.070*
C51.0219 (2)0.7390 (2)0.66148 (17)0.0299 (6)
H50.99680.77760.60630.036*
C61.0044 (3)0.6164 (3)0.6482 (2)0.0460 (8)
H6A1.03890.59340.59230.069*
H6B0.92680.60110.64520.069*
H6C1.03630.57700.69870.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.03548 (17)0.03548 (17)0.02569 (18)0.0024 (2)0.00483 (13)−0.00483 (13)
O10.0449 (12)0.0468 (14)0.0334 (9)−0.0032 (10)0.0117 (9)0.0021 (9)
O20.0277 (10)0.0310 (11)0.0420 (9)0.0005 (8)0.0038 (8)−0.0056 (9)
O30.0380 (12)0.0514 (13)0.0497 (10)0.0025 (9)−0.0045 (9)−0.0172 (9)
O40.0629 (19)0.112 (3)0.178 (3)0.0013 (19)−0.005 (2)−0.105 (3)
O50.0356 (15)0.102 (2)0.0901 (18)0.0029 (14)−0.0133 (13)−0.0283 (17)
N10.0269 (11)0.0310 (11)0.0277 (9)0.0003 (10)0.0016 (9)−0.0025 (8)
N20.0260 (11)0.0307 (11)0.0269 (9)0.0038 (9)−0.0002 (8)−0.0031 (8)
N30.0242 (10)0.0296 (10)0.0275 (8)−0.0036 (8)−0.0028 (9)−0.0012 (9)
N40.0409 (14)0.0495 (16)0.0378 (10)−0.0041 (11)−0.0161 (11)−0.0046 (12)
N50.0369 (15)0.0375 (14)0.0508 (13)0.0048 (11)−0.0053 (11)−0.0062 (12)
C10.0282 (13)0.0250 (13)0.0288 (10)−0.0015 (10)0.0020 (10)0.0035 (10)
C20.0265 (11)0.0248 (12)0.0272 (10)−0.0010 (9)−0.0026 (10)0.0020 (10)
C30.0265 (14)0.0394 (15)0.0336 (11)−0.0004 (11)0.0022 (10)0.0016 (11)
C40.0406 (18)0.0481 (19)0.0515 (16)0.0162 (15)0.0033 (14)0.0044 (15)
C50.0278 (13)0.0339 (14)0.0281 (10)0.0028 (11)−0.0015 (10)−0.0028 (10)
C60.0423 (18)0.0410 (18)0.0546 (17)−0.0048 (15)0.0031 (15)−0.0171 (14)

Geometric parameters (Å, °)

Zn1—N12.0239 (19)N3—N41.410 (3)
Zn1—N1i2.0239 (19)N4—H4B0.8900
Zn1—O32.071 (2)N4—H4C0.8900
Zn1—O3i2.071 (2)C1—C31.492 (4)
O1—C31.426 (3)C2—C51.496 (4)
O1—H10.8200C3—C41.525 (4)
O2—C51.412 (3)C3—H30.9800
O2—H20.8200C4—H4D0.9600
O3—N51.265 (3)C4—H4E0.9600
O4—N51.212 (4)C4—H4F0.9600
O5—N51.215 (4)C5—C61.514 (4)
N1—C11.305 (3)C5—H50.9800
N1—N21.397 (3)C6—H6A0.9600
N2—C21.318 (3)C6—H6B0.9600
N3—C11.352 (3)C6—H6C0.9600
N3—C21.366 (3)
N1—Zn1—N1i143.46 (13)N2—C2—C5125.9 (2)
N1—Zn1—O395.90 (8)N3—C2—C5124.6 (2)
N1i—Zn1—O3104.96 (8)O1—C3—C1107.4 (2)
N1—Zn1—O3i104.96 (8)O1—C3—C4108.4 (2)
N1i—Zn1—O3i95.90 (8)C1—C3—C4110.4 (2)
O3—Zn1—O3i109.73 (13)O1—C3—H3110.2
C3—O1—H1109.5C1—C3—H3110.2
C5—O2—H2109.5C4—C3—H3110.2
N5—O3—Zn1114.52 (17)C3—C4—H4D109.5
C1—N1—N2108.94 (19)C3—C4—H4E109.5
C1—N1—Zn1122.26 (18)H4D—C4—H4E109.5
N2—N1—Zn1128.68 (16)C3—C4—H4F109.5
C2—N2—N1106.0 (2)H4D—C4—H4F109.5
C1—N3—C2107.0 (2)H4E—C4—H4F109.5
C1—N3—N4126.3 (2)O2—C5—C2110.2 (2)
C2—N3—N4126.6 (2)O2—C5—C6107.8 (2)
N3—N4—H4B109.2C2—C5—C6113.0 (2)
N3—N4—H4C109.2O2—C5—H5108.6
H4B—N4—H4C109.5C2—C5—H5108.6
O4—N5—O5120.9 (3)C6—C5—H5108.6
O4—N5—O3118.2 (3)C5—C6—H6A109.5
O5—N5—O3120.8 (3)C5—C6—H6B109.5
N1—C1—N3108.6 (2)H6A—C6—H6B109.5
N1—C1—C3124.7 (2)C5—C6—H6C109.5
N3—C1—C3126.6 (2)H6A—C6—H6C109.5
N2—C2—N3109.4 (2)H6B—C6—H6C109.5

Symmetry codes: (i) y, x, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.822.072.867 (3)163
N4—H4B···O5ii0.892.513.142 (5)129
O2—H2···N2iii0.822.132.943 (3)174
N4—H4C···O4iv0.892.403.022 (4)127

Symmetry codes: (ii) x−1/2, −y+3/2, −z+7/4; (iii) −y+2, −x+2, −z+3/2; (iv) −x+2, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2051).

References

  • Brandenburg, K. & Putz, H. (2007). DIAMONDCrystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART, SADABS and SAINT-PlusBruker AXS Inc., Madison, Wisconsin, USA.
  • Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hang, T., Zhang, W., Ye, H.-Y. & Xiong, R.-G. (2011). Chem. Soc. Rev. 40, 3577–3598. [PubMed]
  • Lin, W. (2010). Top. Catal. 53, 869–875.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33–43. [PubMed]
  • Zhai, Q.-G., Wu, X.-Y., Chen, S.-M., Lu, C.-Z. & Yang, W.-B. (2006). Cryst. Growth Des. 6, 2126–2135.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography