PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2011 November 1; 67(Pt 11): o2854.
Published online 2011 October 5. doi:  10.1107/S1600536811040311
PMCID: PMC3247591

2-(4-Bromo­phen­yl)-2-oxoethyl 4-hy­droxy­benzoate

Abstract

In the title compound, C15H11BrO4, the dihedral angle between the aromatic rings is 66.77 (8)°. In the crystal, O—H(...)O, C—H(...)Br and C—H(...)O hydrogen bonds link the mol­ecules, forming layers lying parallel to (101). The crystal packing is further consolidated by C—H(...)π inter­actions and π–π stacking inter­actions [centroid–centroid distance = 3.5476 (7) Å].

Related literature

For a related structure and background references to phenacyl benzoates, see: Fun et al. (2011 [triangle]). For the synthesis, see: Lund & Langvad (1932 [triangle]). For a related structure, see: Jin et al. (2008 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-67-o2854-scheme1.jpg

Experimental

Crystal data

  • C15H11BrO4
  • M r = 335.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-o2854-efi1.jpg
  • a = 6.2917 (2) Å
  • b = 7.7893 (2) Å
  • c = 26.7497 (8) Å
  • β = 98.234 (2)°
  • V = 1297.43 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.18 mm−1
  • T = 100 K
  • 0.56 × 0.27 × 0.23 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.267, T max = 0.535
  • 15470 measured reflections
  • 4700 independent reflections
  • 3640 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.086
  • S = 1.04
  • 4700 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.74 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811040311/hb6429sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811040311/hb6429Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536811040311/hb6429Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship. AMI thanks Professor Sandeep Sanchethi, Director of the National Institute of Technology–Karnataka, India, for providing research facilities and also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award. MNS thanks the Department of Information Technology, Government of India, for financial support.

supplementary crystallographic information

Comment

As part of our ongoing structural studies of phenacyl benzoates (Fun et al., 2011), we now report the crystal structure of the title compound.

In the title compound (Fig. 1), the dihedral angle formed between the bromo-substituted (C1–C6) and hydroxy-substituted (C10–C15) benzene rings is 66.77 (8)°. Bond lengths and angles are within the normal ranges and are comparable to the related structure (Jin et al., 2008).

In the crystal (Fig. 2), O4—H1O4···O2, C12—H12A···Br1 and C14—H14A···O2 hydrogen bonds (Table 1) link the molecules to form layers parallel to the (101) plane. The crystal packing is further consolidated by C—H···π interactions involving the centroid of the hydroxy-substituted benzene ring (Cg2; Table 1) and π–π interactions (Table 1) involving the centroids of the substituted benzene rings with the distance of Cg1···Cg2 being 3.5476 (7) Å. Cg 1 is the centroid of the bromo-substituted benzene ring.

Experimental

A mixture of 4-hydroxybenzoic acid (1.0 g, 0.0072 mol), potassium carbonate (1.09 g, 0.0079 mol) and 2-bromo-1-(4-bromophenyl)ethanone (2.0 g, 0.0072 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colourless needle-shaped crystals of 2-(4-bromophenyl)-2-oxoethyl 4-hydroxybenzoate began to separate out. It was collected by filtration and recrystallized from ethanol to yield colourless blocks. Yield: 2.1 g, 86.7%. M. p.: 464–465 K (Lund & Langvad, 1932).

Refinement

O– bound H atom was located from a difference Fourier map and was refined with a riding model with Uiso(H) = 1.5 Ueq(O) [O–H = 0.8286 Å]. The remaining H atoms were positioned geometrically and refined with a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.95 or 0.99 Å].

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
Fig. 2.
The crystal packing of the title compound, viewed along the showing the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C15H11BrO4F(000) = 672
Mr = 335.15Dx = 1.716 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6519 reflections
a = 6.2917 (2) Åθ = 2.7–32.6°
b = 7.7893 (2) ŵ = 3.18 mm1
c = 26.7497 (8) ÅT = 100 K
β = 98.234 (2)°Block, colourless
V = 1297.43 (7) Å30.56 × 0.27 × 0.23 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer4700 independent reflections
Radiation source: fine-focus sealed tube3640 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 32.7°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −9→9
Tmin = 0.267, Tmax = 0.535k = −10→11
15470 measured reflectionsl = −40→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0359P)2 + 1.236P] where P = (Fo2 + 2Fc2)/3
4700 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1−0.39495 (3)0.75343 (3)−0.055105 (7)0.02365 (6)
O10.4302 (2)0.54838 (19)0.21200 (5)0.0227 (3)
O20.4827 (2)0.73017 (18)0.12916 (5)0.0238 (3)
O30.6284 (2)0.37103 (19)0.17068 (5)0.0247 (3)
O41.2215 (2)0.48897 (18)0.38337 (5)0.0226 (3)
H1O41.31250.41440.38020.034*
C10.1846 (3)0.7654 (2)0.04036 (7)0.0188 (3)
H1A0.32280.81460.04040.023*
C20.0288 (3)0.7873 (2)−0.00125 (7)0.0200 (3)
H2A0.05960.8489−0.03000.024*
C3−0.1742 (3)0.7171 (2)−0.00004 (7)0.0179 (3)
C4−0.2212 (3)0.6222 (2)0.04075 (7)0.0196 (3)
H4A−0.36000.57400.04060.024*
C5−0.0626 (3)0.5984 (2)0.08189 (7)0.0193 (3)
H5A−0.09230.53220.10990.023*
C60.1407 (3)0.6715 (2)0.08233 (7)0.0173 (3)
C70.3110 (3)0.6554 (2)0.12660 (7)0.0180 (3)
C80.2639 (3)0.5418 (3)0.16963 (7)0.0221 (4)
H8A0.12680.57840.18040.027*
H8B0.24640.42180.15750.027*
C90.6069 (3)0.4528 (2)0.20814 (7)0.0192 (3)
C100.7646 (3)0.4610 (2)0.25472 (6)0.0172 (3)
C110.7237 (3)0.5494 (2)0.29804 (7)0.0192 (3)
H11A0.58950.60510.29840.023*
C120.8786 (3)0.5556 (2)0.34023 (7)0.0205 (3)
H12A0.85030.61540.36950.025*
C131.0759 (3)0.4745 (2)0.34009 (7)0.0194 (3)
C141.1169 (3)0.3844 (2)0.29743 (7)0.0203 (3)
H14A1.25080.32830.29720.024*
C150.9606 (3)0.3775 (2)0.25526 (7)0.0188 (3)
H15A0.98770.31480.22640.023*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02023 (9)0.03119 (11)0.01835 (9)−0.00343 (7)−0.00127 (6)0.00545 (8)
O10.0199 (6)0.0322 (8)0.0155 (6)0.0060 (5)0.0008 (5)0.0007 (5)
O20.0200 (6)0.0264 (7)0.0237 (6)−0.0039 (5)−0.0012 (5)−0.0001 (5)
O30.0268 (6)0.0281 (7)0.0179 (6)0.0050 (6)−0.0012 (5)−0.0049 (5)
O40.0223 (6)0.0244 (7)0.0192 (6)0.0043 (5)−0.0032 (5)0.0036 (5)
C10.0184 (7)0.0190 (8)0.0190 (7)−0.0024 (6)0.0024 (6)−0.0014 (7)
C20.0210 (8)0.0200 (9)0.0190 (8)−0.0014 (6)0.0027 (6)0.0020 (6)
C30.0179 (7)0.0201 (9)0.0151 (7)−0.0003 (6)0.0002 (6)−0.0009 (6)
C40.0179 (7)0.0221 (9)0.0184 (8)−0.0017 (6)0.0014 (6)0.0000 (7)
C50.0195 (7)0.0218 (9)0.0165 (7)−0.0013 (6)0.0024 (6)0.0023 (6)
C60.0184 (7)0.0168 (8)0.0167 (8)0.0007 (6)0.0022 (6)−0.0012 (6)
C70.0181 (7)0.0184 (8)0.0177 (8)0.0015 (6)0.0026 (6)−0.0022 (6)
C80.0178 (7)0.0297 (10)0.0183 (8)0.0015 (7)0.0004 (6)0.0025 (7)
C90.0211 (8)0.0194 (9)0.0170 (7)0.0006 (6)0.0031 (6)0.0022 (6)
C100.0185 (7)0.0176 (8)0.0153 (7)0.0011 (6)0.0018 (6)0.0001 (6)
C110.0220 (8)0.0202 (9)0.0160 (8)0.0034 (6)0.0044 (6)0.0019 (6)
C120.0285 (9)0.0196 (9)0.0138 (7)0.0033 (7)0.0041 (6)0.0002 (6)
C130.0242 (8)0.0177 (8)0.0154 (7)0.0004 (6)0.0002 (6)0.0019 (6)
C140.0209 (8)0.0212 (9)0.0185 (8)0.0033 (6)0.0023 (6)−0.0004 (7)
C150.0217 (8)0.0201 (8)0.0149 (7)0.0017 (6)0.0037 (6)−0.0004 (6)

Geometric parameters (Å, °)

Br1—C31.8954 (17)C5—H5A0.9500
O1—C91.354 (2)C6—C71.484 (2)
O1—C81.429 (2)C7—C81.514 (3)
O2—C71.221 (2)C8—H8A0.9900
O3—C91.211 (2)C8—H8B0.9900
O4—C131.374 (2)C9—C101.479 (2)
O4—H1O40.8286C10—C151.393 (2)
C1—C21.384 (3)C10—C111.403 (2)
C1—C61.400 (2)C11—C121.382 (3)
C1—H1A0.9500C11—H11A0.9500
C2—C31.395 (2)C12—C131.394 (3)
C2—H2A0.9500C12—H12A0.9500
C3—C41.385 (3)C13—C141.395 (3)
C4—C51.388 (2)C14—C151.387 (2)
C4—H4A0.9500C14—H14A0.9500
C5—C61.399 (2)C15—H15A0.9500
C9—O1—C8115.84 (15)C7—C8—H8A109.1
C13—O4—H1O4104.1O1—C8—H8B109.1
C2—C1—C6120.74 (16)C7—C8—H8B109.1
C2—C1—H1A119.6H8A—C8—H8B107.9
C6—C1—H1A119.6O3—C9—O1122.84 (17)
C1—C2—C3118.57 (17)O3—C9—C10125.39 (17)
C1—C2—H2A120.7O1—C9—C10111.77 (15)
C3—C2—H2A120.7C15—C10—C11119.19 (16)
C4—C3—C2121.84 (16)C15—C10—C9118.33 (16)
C4—C3—Br1118.48 (13)C11—C10—C9122.48 (16)
C2—C3—Br1119.67 (14)C12—C11—C10120.00 (17)
C3—C4—C5119.05 (16)C12—C11—H11A120.0
C3—C4—H4A120.5C10—C11—H11A120.0
C5—C4—H4A120.5C11—C12—C13120.42 (17)
C4—C5—C6120.35 (17)C11—C12—H12A119.8
C4—C5—H5A119.8C13—C12—H12A119.8
C6—C5—H5A119.8O4—C13—C12116.55 (16)
C5—C6—C1119.40 (16)O4—C13—C14123.48 (16)
C5—C6—C7121.80 (16)C12—C13—C14119.96 (16)
C1—C6—C7118.78 (16)C15—C14—C13119.49 (17)
O2—C7—C6122.43 (17)C15—C14—H14A120.3
O2—C7—C8120.28 (16)C13—C14—H14A120.3
C6—C7—C8117.30 (15)C14—C15—C10120.91 (16)
O1—C8—C7112.40 (15)C14—C15—H15A119.5
O1—C8—H8A109.1C10—C15—H15A119.5
C6—C1—C2—C31.4 (3)C8—O1—C9—O32.6 (3)
C1—C2—C3—C4−2.1 (3)C8—O1—C9—C10−177.10 (15)
C1—C2—C3—Br1177.19 (14)O3—C9—C10—C154.2 (3)
C2—C3—C4—C50.9 (3)O1—C9—C10—C15−176.10 (16)
Br1—C3—C4—C5−178.33 (14)O3—C9—C10—C11−175.77 (19)
C3—C4—C5—C60.9 (3)O1—C9—C10—C113.9 (3)
C4—C5—C6—C1−1.5 (3)C15—C10—C11—C121.2 (3)
C4—C5—C6—C7177.18 (17)C9—C10—C11—C12−178.79 (18)
C2—C1—C6—C50.4 (3)C10—C11—C12—C130.1 (3)
C2—C1—C6—C7−178.38 (17)C11—C12—C13—O4179.19 (17)
C5—C6—C7—O2−173.81 (18)C11—C12—C13—C14−0.9 (3)
C1—C6—C7—O24.9 (3)O4—C13—C14—C15−179.65 (17)
C5—C6—C7—C85.8 (3)C12—C13—C14—C150.5 (3)
C1—C6—C7—C8−175.45 (16)C13—C14—C15—C100.8 (3)
C9—O1—C8—C7−79.3 (2)C11—C10—C15—C14−1.7 (3)
O2—C7—C8—O15.1 (3)C9—C10—C15—C14178.32 (17)
C6—C7—C8—O1−174.58 (15)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2i0.831.972.7961 (19)177
C12—H12A···Br1ii0.952.903.7938 (18)158
C14—H14A···O2i0.952.523.198 (2)129
C15—H15A···Cg2i0.952.863.6181 (18)137

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x+1, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6429).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  • Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst E67, o2836. [PMC free article] [PubMed]
  • Jin, Y., Guo, J.-N., Lin, K., Tang, G. & Zhao, Y.-F. (2008). Acta Cryst. E64, o507. [PMC free article] [PubMed]
  • Lund, H. & Langvad, T. (1932). J. Am. Chem. Soc. 54, 4107–4110.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography