PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Nov 1, 2011; 67(Pt 11): o2974.
Published online Oct 22, 2011. doi:  10.1107/S160053681104205X
PMCID: PMC3247378
Ethyl 8-chloro-1-cyclo­propyl-6,7-difluoro-4-oxo-1,4-dihydro­quinoline-3-carboxyl­ate
Hong-shun Sun,a* Long Jiang,b Yu-Long Li,c Xin-hua Lu,a and Hong Xuc
aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People’s Republic of China
bR&D Center, Jiangsu Yabang Pharmaceutical Group, Liangchang Road East No. 6 Jingtan, Changzhou 213200, People’s Republic of China
cDepartment of Chemical Engineering, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People’s Republic of China
Correspondence e-mail: njutshs/at/126.com
Received September 26, 2011; Accepted October 12, 2011.
Abstract
In the mol­ecule of the title compound, C15H12ClF2NO3, the quinoline ring system is not planar, the dihedral angle between the pyridine and benzene rings being 3.55 (8)°. In the crystal, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into layers parallel to (101).
Related literature
For the anti­bacterial activity of quinolone derivatives, see: Fujita & Chiba (1998 [triangle]). For a related structure, see: Wang et al. (2008 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-67-o2974-scheme1.jpg Object name is e-67-o2974-scheme1.jpg
Crystal data
  • C15H12ClF2NO3
  • M r = 327.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-o2974-efi1.jpg
  • a = 11.336 (2) Å
  • b = 7.7440 (15) Å
  • c = 16.157 (3) Å
  • β = 95.40 (3)°
  • V = 1412.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm
Data collection
  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.914, T max = 0.970
  • 2741 measured reflections
  • 2604 independent reflections
  • 1728 reflections with I > 2σ(I)
  • R int = 0.025
  • 3 standard reflections every 200 reflections intensity decay: 1%
Refinement
  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.158
  • S = 1.00
  • 2604 reflections
  • 200 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.25 e Å−3
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681104205X/rz2646sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681104205X/rz2646Isup2.hkl
Supplementary material file. DOI: 10.1107/S160053681104205X/rz2646Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
supplementary crystallographic information
Comment
Quinolone antibacterials were found several decades ago, and some excellent antibacterials have been developed and used widely (Fujita & Chiba, 1998). An interest in the search of more potent antibacterial agents led us to design and synthesize a new type of quinoline derivative. The title compound is one of the key intermediates and we report here its crystal structure.
The quinoline ring system is not planar, the dihedral angle between the pyridine and benzene rings being 3.55 (8)°. The dihedral angle between the three-membered ring and the quinoline ring system is 80.5 (5)°. Bond lengths and angles agree well with those observed in the strictly related compound ethyl 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylate reported recently (Wang et al., 2008). In the crystal structure, intermolecular C—H···O hydrogen bonds link molecules into layers parallel to the (101) plane.
Experimental
A solution of 3-cyclopropylamino-2-(2,4,5-trifluoro-3-chlorobenzoyl)acrylic acid ethyl ester (26.1 g, 0.075 mol) in DMF (110 ml) was treated with K2CO3 (22 g, 0.16 mol) and then heated to 50°C with stirring for 1 h. The resulting precipitate was filtered, washed with a mixture of ice and water, and dried to give 22 g of the title compound (yield 90%). Crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow evaporation of an acetone solution.
Refinement
All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.
Figures
Fig. 1.
Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
Crystal data
C15H12ClF2NO3F(000) = 672
Mr = 327.71Dx = 1.541 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.336 (2) Åθ = 9–13°
b = 7.7440 (15) ŵ = 0.31 mm1
c = 16.157 (3) ÅT = 293 K
β = 95.40 (3)°Block, colourless
V = 1412.1 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection
Enraf–Nonius CAD-4 diffractometer1728 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
graphiteθmax = 25.4°, θmin = 2.1°
ω/2θ scansh = 0→13
Absorption correction: ψ scan (North et al., 1968)k = 0→9
Tmin = 0.914, Tmax = 0.970l = −19→19
2741 measured reflections3 standard reflections every 200 reflections
2604 independent reflections intensity decay: 1%
Refinement
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.158w = 1/[σ2(Fo2) + (0.094P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2604 reflectionsΔρmax = 0.21 e Å3
200 parametersΔρmin = −0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (3)
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
Cl0.19669 (7)0.51225 (11)0.40024 (6)0.0668 (4)
N0.44922 (19)0.3170 (3)0.40949 (14)0.0419 (6)
O10.59434 (19)0.1055 (3)0.62827 (13)0.0642 (7)
C10.3696 (3)0.2253 (4)0.62119 (19)0.0544 (8)
H1A0.40370.17280.66940.065*
F10.19320 (19)0.2766 (4)0.68412 (14)0.0983 (8)
O20.79506 (19)0.0443 (3)0.54403 (15)0.0651 (7)
F20.09874 (16)0.4358 (3)0.54885 (14)0.0800 (7)
C20.2582 (3)0.2886 (5)0.6180 (2)0.0631 (9)
O30.79232 (18)0.1827 (3)0.42263 (14)0.0627 (6)
C30.2086 (3)0.3706 (4)0.5476 (2)0.0570 (9)
C40.2681 (3)0.3882 (4)0.47802 (19)0.0485 (8)
C50.3828 (2)0.3153 (3)0.47746 (17)0.0399 (7)
C60.4329 (2)0.2392 (4)0.55187 (17)0.0420 (7)
C70.5626 (2)0.2603 (4)0.41917 (17)0.0436 (7)
H7A0.60600.26900.37330.052*
C80.6190 (2)0.1915 (4)0.48987 (17)0.0421 (7)
C90.5555 (2)0.1703 (4)0.56176 (17)0.0440 (7)
C100.4003 (3)0.3598 (4)0.32426 (17)0.0499 (8)
H10A0.39410.48310.31090.060*
C110.3070 (3)0.2476 (4)0.28256 (18)0.0569 (9)
H11A0.28160.14860.31310.068*
H11B0.24500.30230.24620.068*
C120.4275 (3)0.2441 (5)0.25528 (18)0.0630 (9)
H12A0.43930.29670.20220.076*
H12B0.47590.14310.26920.076*
C130.7432 (3)0.1294 (4)0.49057 (19)0.0475 (7)
C140.9161 (3)0.1308 (6)0.4192 (2)0.0697 (10)
H14A0.92410.00670.42610.084*
H14B0.96630.18690.46320.084*
C150.9506 (4)0.1833 (6)0.3377 (2)0.0891 (13)
H15A1.03160.15160.33320.134*
H15B0.94210.30620.33170.134*
H15C0.90050.12660.29470.134*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
Cl0.0592 (5)0.0603 (6)0.0764 (6)0.0187 (4)−0.0166 (4)−0.0001 (4)
N0.0404 (13)0.0399 (13)0.0437 (13)−0.0013 (10)−0.0054 (10)0.0007 (10)
O10.0579 (13)0.0809 (17)0.0511 (13)0.0097 (12)−0.0089 (10)0.0147 (12)
C10.056 (2)0.058 (2)0.0477 (17)−0.0018 (16)0.0012 (15)0.0002 (15)
F10.0732 (15)0.146 (2)0.0798 (14)0.0125 (15)0.0296 (12)0.0032 (15)
O20.0507 (13)0.0699 (16)0.0727 (15)0.0149 (11)−0.0035 (12)0.0137 (13)
F20.0461 (11)0.0932 (16)0.1010 (16)0.0177 (11)0.0077 (11)−0.0139 (13)
C20.055 (2)0.078 (2)0.058 (2)−0.0008 (18)0.0145 (17)−0.0068 (18)
O30.0421 (12)0.0806 (17)0.0646 (14)0.0079 (11)0.0012 (10)0.0107 (13)
C30.0412 (17)0.060 (2)0.069 (2)0.0050 (15)0.0009 (16)−0.0149 (18)
C40.0454 (17)0.0388 (16)0.0585 (19)0.0015 (13)−0.0102 (15)−0.0070 (14)
C50.0364 (14)0.0321 (14)0.0493 (16)−0.0045 (12)−0.0057 (12)−0.0023 (12)
C60.0423 (16)0.0381 (15)0.0440 (15)−0.0032 (12)−0.0039 (13)−0.0028 (13)
C70.0408 (16)0.0427 (16)0.0470 (16)−0.0042 (13)0.0024 (13)−0.0002 (14)
C80.0396 (15)0.0378 (15)0.0471 (16)−0.0035 (12)−0.0043 (13)−0.0024 (13)
C90.0445 (16)0.0395 (16)0.0452 (17)−0.0026 (13)−0.0110 (13)−0.0020 (14)
C100.0549 (18)0.0459 (17)0.0460 (17)0.0000 (14)−0.0102 (14)0.0065 (14)
C110.055 (2)0.061 (2)0.0516 (17)0.0007 (16)−0.0129 (15)0.0014 (16)
C120.069 (2)0.076 (2)0.0430 (17)0.0012 (19)0.0009 (16)0.0032 (17)
C130.0442 (16)0.0441 (17)0.0526 (18)−0.0020 (14)−0.0044 (14)−0.0023 (15)
C140.0433 (18)0.087 (3)0.079 (2)0.0094 (18)0.0044 (17)0.005 (2)
C150.072 (3)0.106 (3)0.092 (3)0.008 (2)0.022 (2)0.004 (3)
Geometric parameters (Å, °)
Cl—C41.723 (3)C7—C81.364 (4)
N—C71.353 (3)C7—H7A0.9300
N—C51.389 (4)C8—C91.432 (4)
N—C101.473 (3)C8—C131.486 (4)
O1—C91.229 (3)C10—C111.481 (4)
C1—C21.351 (5)C10—C121.485 (4)
C1—C61.390 (4)C10—H10A0.9800
C1—H1A0.9300C11—C121.475 (5)
F1—C21.357 (4)C11—H11A0.9700
O2—C131.196 (3)C11—H11B0.9700
F2—C31.346 (4)C12—H12A0.9700
C2—C31.375 (5)C12—H12B0.9700
O3—C131.342 (4)C14—C151.467 (5)
O3—C141.466 (4)C14—H14A0.9700
C3—C41.371 (4)C14—H14B0.9700
C4—C51.418 (4)C15—H15A0.9600
C5—C61.410 (4)C15—H15B0.9600
C6—C91.483 (4)C15—H15C0.9600
C7—N—C5119.0 (2)N—C10—C12118.7 (3)
C7—N—C10116.8 (2)C11—C10—C1259.6 (2)
C5—N—C10123.8 (2)N—C10—H10A116.0
C2—C1—C6119.5 (3)C11—C10—H10A116.0
C2—C1—H1A120.3C12—C10—H10A116.0
C6—C1—H1A120.3C12—C11—C1060.3 (2)
C1—C2—F1121.3 (3)C12—C11—H11A117.7
C1—C2—C3120.5 (3)C10—C11—H11A117.7
F1—C2—C3118.2 (3)C12—C11—H11B117.7
C13—O3—C14114.8 (2)C10—C11—H11B117.7
F2—C3—C4120.2 (3)H11A—C11—H11B114.9
F2—C3—C2117.9 (3)C11—C12—C1060.1 (2)
C4—C3—C2121.9 (3)C11—C12—H12A117.8
C3—C4—C5119.2 (3)C10—C12—H12A117.8
C3—C4—Cl114.8 (2)C11—C12—H12B117.8
C5—C4—Cl125.9 (3)C10—C12—H12B117.8
N—C5—C6118.3 (2)H12A—C12—H12B114.9
N—C5—C4124.5 (3)O2—C13—O3123.1 (3)
C6—C5—C4117.2 (3)O2—C13—C8125.8 (3)
C1—C6—C5121.5 (3)O3—C13—C8111.1 (3)
C1—C6—C9115.8 (3)O3—C14—C15107.1 (3)
C5—C6—C9122.7 (3)O3—C14—H14A110.3
N—C7—C8126.1 (3)C15—C14—H14A110.3
N—C7—H7A116.9O3—C14—H14B110.3
C8—C7—H7A116.9C15—C14—H14B110.3
C7—C8—C9119.4 (3)H14A—C14—H14B108.5
C7—C8—C13120.1 (3)C14—C15—H15A109.5
C9—C8—C13120.3 (3)C14—C15—H15B109.5
O1—C9—C8126.1 (3)H15A—C15—H15B109.5
O1—C9—C6119.7 (3)C14—C15—H15C109.5
C8—C9—C6114.2 (2)H15A—C15—H15C109.5
N—C10—C11118.9 (3)H15B—C15—H15C109.5
C6—C1—C2—F1179.6 (3)C10—N—C7—C8−170.2 (3)
C6—C1—C2—C3−1.8 (5)N—C7—C8—C91.7 (4)
C1—C2—C3—F2−178.0 (3)N—C7—C8—C13178.1 (3)
F1—C2—C3—F20.7 (5)C7—C8—C9—O1177.6 (3)
C1—C2—C3—C41.4 (5)C13—C8—C9—O11.3 (5)
F1—C2—C3—C4−179.9 (3)C7—C8—C9—C6−3.9 (4)
F2—C3—C4—C5−178.7 (3)C13—C8—C9—C6179.8 (2)
C2—C3—C4—C52.0 (5)C1—C6—C9—O10.3 (4)
F2—C3—C4—Cl5.2 (4)C5—C6—C9—O1179.9 (3)
C2—C3—C4—Cl−174.1 (3)C1—C6—C9—C8−178.3 (2)
C7—N—C5—C6−5.9 (4)C5—C6—C9—C81.3 (4)
C10—N—C5—C6167.3 (2)C7—N—C10—C11110.6 (3)
C7—N—C5—C4172.8 (3)C5—N—C10—C11−62.8 (4)
C10—N—C5—C4−13.9 (4)C7—N—C10—C1241.4 (4)
C3—C4—C5—N176.6 (3)C5—N—C10—C12−132.0 (3)
Cl—C4—C5—N−7.8 (4)N—C10—C11—C12−108.2 (3)
C3—C4—C5—C6−4.7 (4)N—C10—C12—C11108.5 (3)
Cl—C4—C5—C6170.9 (2)C14—O3—C13—O2−0.9 (5)
C2—C1—C6—C5−1.1 (5)C14—O3—C13—C8178.5 (3)
C2—C1—C6—C9178.4 (3)C7—C8—C13—O2−168.0 (3)
N—C5—C6—C1−176.8 (3)C9—C8—C13—O28.3 (5)
C4—C5—C6—C14.3 (4)C7—C8—C13—O312.5 (4)
N—C5—C6—C93.6 (4)C9—C8—C13—O3−171.2 (2)
C4—C5—C6—C9−175.2 (3)C13—O3—C14—C15174.0 (3)
C5—N—C7—C83.5 (4)
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.972.553.240 (4)128.
C11—H11B···O1ii0.972.543.491 (4)167.
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1/2, −y+1/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2646).
References
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Fujita, M. & Chiba, K. (1998). Chem. Pharm. Bull. 46, 631–638. [PubMed]
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, D.-C., Huang, X.-M., Liu, Y.-P. & Tang, C.-L. (2008). Acta Cryst. E64, o2214. [PMC free article] [PubMed]
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography