PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2011 December 1; 67(Pt 12): m1837–m1838.
Published online 2011 November 25. doi:  10.1107/S1600536811049373
PMCID: PMC3238736

(Acetonitrile-κN)chloridobis[2-(pyridin-2-yl)phenyl-κ2 C 1,N]iridium(III)

Abstract

The IrIII atom of the title compound, [Ir(C11H8N)2Cl(CH3CN)], displays a distorted octa­hedral coordination. The pyridyl groups are in trans positions [N—Ir—N = 173.07 (10)°], while the phenyl groups are trans with respect to the acetonitrile and chloride groups [C—Ir—N = 178.13 (11) and C—Ir—Cl = 176.22 (9)°]. The pyridyl­phenyl groups only show a small deviation from planarity, with the dihedral angle between the planes of the two six-membered rings in each pyridyl­phenyl group being 5.6 (2) and 5.8 (1)°. The crystal packing shows inter­molecular C—H(...)Cl, C—H(...)π(acetonitrile) and C—H(...)π(pyridyl­phen­yl) contacts.

Related literature

For our work on redox active ligands, see: Jäkle et al. (1996 [triangle]); Guo et al. (2001 [triangle]); Margraf et al. (2006 [triangle]); Kretz et al. (2006 [triangle]); Phan et al. (2011 [triangle]); Scheuermann et al. (2008 [triangle], 2009 [triangle]); Blasberg et al. (2010 [triangle], 2011 [triangle]). For the synthesis of the starting materials, see: Blasberg et al. (2011 [triangle]); Lowry et al. (2004 [triangle]). For related structures, see: Yang et al. (2009 [triangle]); Shu et al. (2011 [triangle]); McGee & Mann (2007 [triangle]); Garces et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-67-m1837-scheme1.jpg

Experimental

Crystal data

  • [Ir(C11H8N)2Cl(C2H3N)]
  • M r = 577.07
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-67-m1837-efi1.jpg
  • a = 16.5255 (8) Å
  • b = 14.6588 (7) Å
  • c = 17.0536 (8) Å
  • V = 4131.1 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 6.61 mm−1
  • T = 171 K
  • 0.38 × 0.34 × 0.20 mm

Data collection

  • Siemens SMART 1K CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.176, T max = 0.267
  • 44325 measured reflections
  • 4772 independent reflections
  • 3899 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.040
  • S = 1.07
  • 4772 reflections
  • 263 parameters
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: SMART (Siemens, 1995 [triangle]); cell refinement: SAINT (Siemens, 1995 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811049373/tk5023sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811049373/tk5023Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

One of the highlights of our group's work is the synthesis and characterization of redox active ligands for transition metal catalyzed reactions and applications in material science. Up to now we have applied electro-active ligands with poly(pyrazol-1-yl)borate (Jäkle et al., 1996; Guo et al., 2001), diimine (Margraf et al., 2006; Kretz et al., 2006; Phan et al., 2011) and bis(pyrazol-1-yl)methane (Scheuermann et al., 2008; Scheuermann et al., 2009; Blasberg et al., 2010) donor groups. So far, ferrocenyl and mainly para-quinonyl units (quinone is used if the oxidation state is not defined) were used as the redox-active element. But recently our attention turned to ortho-quinone derivatives, since they should allow for efficient bridging of two different transition metal centers in redox-switchable catalysis. In this context, synthesis of the hetero-bimetallic complex 3 with an ortho-hydroquinone-derived bis(pyrazol-1-yl)methane ligand, a catalytically active palladium(II) and a light-switchable iridium(III) center was attempted (see Fig. 1). This molecule might allow for light-driven redox-reactions, which in turn can switch catalysis on or off. The palladium(II) complex 1 (Blasberg et al., 2010; Blasberg et al., 2011) was deprotonated twice with lithium t-butoxide (LiOtBu) in a tetrahydrofuran solution in a glove box and subsequently tetrakis-[2-(pyridin-2-yl)phenyl]-dichlorido-diiridium(III) 2 (Lowry et al., 2004) was added to the resulting dianion. After stirring overnight and recrystallization of the resulting crude material from acetonitrile, the only obtained product was (acetonitrile-N)-chlorido-bis[2-(pyridin-2-yl)phenyl-C,N]iridium(III) 4, instead of the expected compound 3.

The molecular structure of the title compound is shown in Fig. 2. The Ir(III) atom displays octahedral coordination (Table 1). The pyridyl groups are in trans positions and the phenyl groups in cis positions with respect to the central metal atom. A trans position of the pyridyl groups also has been observed in dimer 2 (McGee & Mann, 2007; Garces et al., 1993) and in related compounds (Shu et al., 2011). The bond lengths involving the Ir atom are very similar to the values reported for a closely related molecule (Yang et al., 2009). The pyridylphenyl groups only show a small deviation from planarity. The angle between the planes of the two six-membered rings is 5.6 (2) and 5.8 (1)°, respectively, for the two different pyridylphenyl groups. The crystal packing shows two intermolecular C—H···Cl contacts, an intermolecular C—H···πacetonitrile and an intermolecular C—H···πpyridylphenyl contact (Table 2). The C—H···πacetonitrile contact points closer towards atom C23 than towards the midpoint of the C[equivalent] N triple bond. The C—H···πpyridylphenyl contact does not point towards the center of one of the six-membered rings. It rather points towards the midpoint of the C17—C18 bond.

Experimental

Dichlorido-[1-(bis-1H-pyrazol-1-ylmethyl)-benzene-3,4-diol-N,N']palladium(II) (50 mg, 0.12 mmol; Blasberg et al., 2011) was reacted with 19 mg (0.23 mmol) of lithium t-butoxide in tetrahydrofuran (4 ml) for 5 min, after which 62 mg (0.12 mmol) of tetrakis-[2-(pyridin-2-yl)phenyl]-dichlorido-diiridium(III) was added. After stirring overnight, the suspension which had formed, was separated by centrifugation and dried by evaporation. Recrystallization of the tan-colored powder from acetonitrile yielded yellow-brown blocks of the title compound.

Refinement

The H atoms were positioned geometrically and treated as riding with Cplanar—H = 0.95 Å and Cmethyl—H = 0.98 Å, and with Uiso(H)=1.2Ueq(Cplanar) and Uiso(H)=1.5Ueq(Cmethyl).

Figures

Fig. 1.
The attempted synthesis of compound 3 and the synthesis of the title compound 4.
Fig. 2.
The molecular structure of the title molecule shown with 50% probability displacement ellipsoids. The H atoms are drawn as small spheres of arbitrary radius.

Crystal data

[Ir(C11H8N)2Cl(C2H3N)]F(000) = 2224
Mr = 577.07Dx = 1.856 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8192 reflections
a = 16.5255 (8) Åθ = 3–26°
b = 14.6588 (7) ŵ = 6.61 mm1
c = 17.0536 (8) ÅT = 171 K
V = 4131.1 (3) Å3Block, yellow-brown
Z = 80.38 × 0.34 × 0.20 mm

Data collection

Siemens SMART 1K CCD diffractometer4772 independent reflections
Radiation source: normal-focus sealed tube3899 reflections with I > 2σ(I)
graphiteRint = 0.043
ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −21→21
Tmin = 0.176, Tmax = 0.267k = −18→19
44325 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.040H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.01P)2 + 6P] where P = (Fo2 + 2Fc2)/3
4772 reflections(Δ/σ)max = 0.002
263 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = −0.67 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ir10.120571 (6)0.443245 (7)0.139275 (6)0.01422 (4)
Cl10.10742 (5)0.35418 (5)0.01602 (4)0.02214 (17)
N10.15302 (14)0.55553 (17)0.07570 (14)0.0168 (5)
N20.09788 (15)0.33598 (17)0.21296 (14)0.0173 (6)
N3−0.00690 (15)0.46420 (16)0.13721 (15)0.0180 (5)
C10.10024 (19)0.6140 (2)0.04170 (19)0.0208 (7)
H1A0.04420.59950.04190.025*
C20.1253 (2)0.6939 (2)0.00676 (19)0.0271 (7)
H2A0.08720.7336−0.01720.032*
C30.2071 (2)0.7156 (2)0.0070 (2)0.0269 (8)
H3A0.22550.7715−0.01480.032*
C40.2612 (2)0.6548 (2)0.03935 (19)0.0227 (7)
H4A0.31740.66820.03890.027*
C50.23377 (18)0.5736 (2)0.07272 (18)0.0188 (7)
C60.28432 (19)0.5020 (2)0.10731 (18)0.0183 (7)
C70.3682 (2)0.5025 (2)0.10645 (19)0.0262 (8)
H7A0.39600.55250.08350.031*
C80.4118 (2)0.4314 (2)0.1385 (2)0.0314 (8)
H8A0.46930.43230.13780.038*
C90.3706 (2)0.3584 (2)0.1717 (2)0.0287 (8)
H9A0.40010.30900.19370.034*
C100.2866 (2)0.3570 (2)0.17310 (19)0.0224 (7)
H10A0.25950.30670.19640.027*
C110.24108 (18)0.4280 (2)0.14108 (18)0.0184 (6)
C120.07559 (19)0.2516 (2)0.1899 (2)0.0234 (7)
H12A0.07020.23930.13540.028*
C130.0605 (2)0.1831 (2)0.2425 (2)0.0286 (8)
H13A0.04380.12460.22490.034*
C140.0697 (2)0.2002 (2)0.3214 (2)0.0294 (8)
H14A0.06050.15310.35860.035*
C150.0923 (2)0.2858 (2)0.34593 (19)0.0256 (8)
H15A0.09910.29790.40030.031*
C160.10527 (18)0.3545 (2)0.29141 (18)0.0183 (7)
C170.12382 (17)0.4502 (2)0.30864 (17)0.0180 (6)
C180.1296 (2)0.4849 (2)0.38490 (18)0.0234 (7)
H18A0.12320.44520.42850.028*
C190.1446 (2)0.5767 (2)0.3970 (2)0.0294 (8)
H19A0.14880.60040.44870.035*
C200.1534 (2)0.6340 (2)0.3325 (2)0.0298 (8)
H20A0.16350.69720.34030.036*
C210.1477 (2)0.5998 (2)0.2570 (2)0.0246 (8)
H21A0.15450.64000.21390.030*
C220.13213 (18)0.5074 (2)0.24265 (17)0.0171 (6)
C23−0.07549 (19)0.4705 (2)0.1405 (2)0.0216 (7)
C24−0.1632 (2)0.4813 (3)0.1439 (2)0.0344 (9)
H24A−0.18050.52510.10380.052*
H24B−0.17870.50390.19590.052*
H24C−0.18920.42230.13430.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ir10.01496 (6)0.01404 (6)0.01367 (6)0.00062 (5)−0.00041 (5)0.00067 (5)
Cl10.0257 (4)0.0242 (4)0.0165 (4)0.0035 (3)−0.0032 (3)−0.0025 (3)
N10.0193 (12)0.0163 (12)0.0148 (12)0.0023 (11)0.0007 (10)0.0020 (12)
N20.0202 (14)0.0168 (13)0.0149 (13)0.0008 (10)0.0016 (10)0.0009 (11)
N30.0201 (14)0.0152 (13)0.0186 (13)−0.0005 (10)−0.0010 (12)0.0001 (11)
C10.0192 (17)0.0222 (17)0.0211 (17)0.0020 (13)−0.0020 (13)−0.0001 (14)
C20.0330 (19)0.0214 (17)0.0267 (18)0.0051 (16)−0.0036 (16)0.0070 (14)
C30.036 (2)0.0189 (17)0.0263 (19)−0.0037 (15)0.0020 (16)0.0081 (15)
C40.0227 (17)0.0223 (17)0.0232 (18)−0.0061 (14)0.0014 (14)0.0016 (14)
C50.0189 (16)0.0225 (18)0.0149 (15)−0.0008 (12)−0.0010 (12)−0.0017 (13)
C60.0201 (16)0.0193 (16)0.0156 (16)−0.0011 (13)−0.0019 (13)−0.0003 (13)
C70.0222 (18)0.0309 (19)0.0255 (17)−0.0054 (15)0.0003 (14)0.0014 (15)
C80.0149 (15)0.042 (2)0.037 (2)0.0031 (15)−0.0031 (16)0.001 (2)
C90.0236 (19)0.0290 (19)0.0335 (19)0.0084 (15)−0.0064 (16)0.0032 (15)
C100.0241 (17)0.0168 (17)0.0263 (18)0.0010 (13)−0.0024 (14)0.0018 (14)
C110.0184 (15)0.0202 (16)0.0167 (14)0.0022 (12)−0.0021 (14)−0.0059 (15)
C120.0259 (18)0.0228 (18)0.0216 (19)−0.0010 (14)−0.0003 (14)−0.0030 (15)
C130.042 (2)0.0162 (18)0.028 (2)−0.0037 (15)0.0050 (16)−0.0002 (15)
C140.043 (2)0.0213 (19)0.0240 (19)−0.0031 (16)0.0048 (16)0.0089 (15)
C150.0321 (18)0.0248 (18)0.0200 (19)−0.0001 (14)0.0007 (14)0.0026 (14)
C160.0177 (16)0.0183 (16)0.0188 (16)0.0039 (12)−0.0001 (13)0.0013 (13)
C170.0158 (14)0.0215 (15)0.0167 (14)0.0014 (14)−0.0013 (12)−0.0006 (13)
C180.0253 (18)0.0269 (17)0.0181 (16)0.0000 (15)−0.0009 (14)−0.0004 (13)
C190.034 (2)0.033 (2)0.0207 (18)−0.0021 (15)−0.0022 (15)−0.0096 (15)
C200.040 (2)0.0200 (18)0.030 (2)−0.0014 (15)−0.0027 (16)−0.0084 (15)
C210.0303 (19)0.0207 (18)0.0229 (18)−0.0002 (14)−0.0012 (15)−0.0001 (14)
C220.0137 (15)0.0199 (15)0.0176 (15)0.0028 (13)−0.0011 (12)−0.0005 (13)
C230.0243 (18)0.0211 (16)0.0193 (16)0.0008 (12)−0.0011 (15)−0.0014 (15)
C240.0205 (18)0.042 (2)0.041 (2)0.0020 (15)0.0023 (17)0.003 (2)

Geometric parameters (Å, °)

Ir1—C112.004 (3)C9—H9A0.9500
Ir1—C222.007 (3)C10—C111.394 (4)
Ir1—N12.043 (2)C10—H10A0.9500
Ir1—N22.047 (2)C12—C131.370 (5)
Ir1—N32.129 (3)C12—H12A0.9500
Ir1—Cl12.4839 (7)C13—C141.376 (5)
N1—C11.353 (4)C13—H13A0.9500
N1—C51.361 (4)C14—C151.374 (5)
N2—C121.349 (4)C14—H14A0.9500
N2—C161.371 (4)C15—C161.388 (4)
N3—C231.139 (4)C15—H15A0.9500
C1—C21.378 (4)C16—C171.466 (4)
C1—H1A0.9500C17—C181.399 (4)
C2—C31.389 (5)C17—C221.410 (4)
C2—H2A0.9500C18—C191.385 (5)
C3—C41.378 (5)C18—H18A0.9500
C3—H3A0.9500C19—C201.392 (5)
C4—C51.394 (4)C19—H19A0.9500
C4—H4A0.9500C20—C211.384 (5)
C5—C61.465 (4)C20—H20A0.9500
C6—C71.386 (4)C21—C221.400 (4)
C6—C111.422 (4)C21—H21A0.9500
C7—C81.380 (5)C23—C241.459 (4)
C7—H7A0.9500C24—H24A0.9800
C8—C91.389 (5)C24—H24B0.9800
C8—H8A0.9500C24—H24C0.9800
C9—C101.389 (5)
C11—Ir1—C2286.81 (12)C10—C9—H9A119.7
C11—Ir1—N180.64 (11)C9—C10—C11121.5 (3)
C22—Ir1—N193.65 (11)C9—C10—H10A119.3
C11—Ir1—N294.97 (11)C11—C10—H10A119.3
C22—Ir1—N280.69 (11)C10—C11—C6117.2 (3)
N1—Ir1—N2173.07 (10)C10—C11—Ir1128.7 (2)
C11—Ir1—N3178.13 (11)C6—C11—Ir1114.1 (2)
C22—Ir1—N392.36 (11)N2—C12—C13122.0 (3)
N1—Ir1—N397.75 (9)N2—C12—H12A119.0
N2—Ir1—N386.54 (9)C13—C12—H12A119.0
C11—Ir1—Cl192.36 (9)C12—C13—C14119.1 (3)
C22—Ir1—Cl1176.22 (9)C12—C13—H13A120.4
N1—Ir1—Cl189.85 (7)C14—C13—H13A120.4
N2—Ir1—Cl195.72 (7)C15—C14—C13119.6 (3)
N3—Ir1—Cl188.58 (7)C15—C14—H14A120.2
C1—N1—C5119.5 (3)C13—C14—H14A120.2
C1—N1—Ir1124.6 (2)C14—C15—C16120.0 (3)
C5—N1—Ir1115.7 (2)C14—C15—H15A120.0
C12—N2—C16119.4 (3)C16—C15—H15A120.0
C12—N2—Ir1125.1 (2)N2—C16—C15119.8 (3)
C16—N2—Ir1115.5 (2)N2—C16—C17113.8 (3)
C23—N3—Ir1174.8 (3)C15—C16—C17126.4 (3)
N1—C1—C2122.0 (3)C18—C17—C22121.3 (3)
N1—C1—H1A119.0C18—C17—C16123.2 (3)
C2—C1—H1A119.0C22—C17—C16115.4 (3)
C1—C2—C3119.1 (3)C19—C18—C17120.3 (3)
C1—C2—H2A120.4C19—C18—H18A119.9
C3—C2—H2A120.4C17—C18—H18A119.9
C4—C3—C2118.9 (3)C18—C19—C20119.2 (3)
C4—C3—H3A120.5C18—C19—H19A120.4
C2—C3—H3A120.5C20—C19—H19A120.4
C3—C4—C5120.3 (3)C21—C20—C19120.6 (3)
C3—C4—H4A119.8C21—C20—H20A119.7
C5—C4—H4A119.8C19—C20—H20A119.7
N1—C5—C4120.0 (3)C20—C21—C22121.7 (3)
N1—C5—C6113.8 (3)C20—C21—H21A119.1
C4—C5—C6126.2 (3)C22—C21—H21A119.1
C7—C6—C11120.7 (3)C21—C22—C17116.9 (3)
C7—C6—C5124.2 (3)C21—C22—Ir1128.7 (2)
C11—C6—C5115.1 (3)C17—C22—Ir1114.4 (2)
C8—C7—C6121.0 (3)N3—C23—C24178.3 (4)
C8—C7—H7A119.5C23—C24—H24A109.5
C6—C7—H7A119.5C23—C24—H24B109.5
C7—C8—C9119.1 (3)H24A—C24—H24B109.5
C7—C8—H8A120.4C23—C24—H24C109.5
C9—C8—H8A120.4H24A—C24—H24C109.5
C8—C9—C10120.5 (3)H24B—C24—H24C109.5
C8—C9—H9A119.7
C11—Ir1—N1—C1176.5 (3)C22—Ir1—C11—C1089.2 (3)
C22—Ir1—N1—C1−97.3 (3)N1—Ir1—C11—C10−176.6 (3)
N3—Ir1—N1—C1−4.4 (3)N2—Ir1—C11—C108.8 (3)
Cl1—Ir1—N1—C184.1 (2)Cl1—Ir1—C11—C10−87.1 (3)
C11—Ir1—N1—C5−7.7 (2)C22—Ir1—C11—C6−88.3 (2)
C22—Ir1—N1—C578.5 (2)N1—Ir1—C11—C65.9 (2)
N3—Ir1—N1—C5171.4 (2)N2—Ir1—C11—C6−168.6 (2)
Cl1—Ir1—N1—C5−100.1 (2)Cl1—Ir1—C11—C695.4 (2)
C11—Ir1—N2—C12−98.7 (3)C16—N2—C12—C13−0.4 (5)
C22—Ir1—N2—C12175.4 (3)Ir1—N2—C12—C13−179.3 (2)
N3—Ir1—N2—C1282.4 (2)N2—C12—C13—C14−1.2 (5)
Cl1—Ir1—N2—C12−5.8 (2)C12—C13—C14—C151.2 (5)
C11—Ir1—N2—C1682.4 (2)C13—C14—C15—C160.4 (5)
C22—Ir1—N2—C16−3.5 (2)C12—N2—C16—C152.0 (4)
N3—Ir1—N2—C16−96.5 (2)Ir1—N2—C16—C15−179.0 (2)
Cl1—Ir1—N2—C16175.28 (19)C12—N2—C16—C17−175.6 (3)
C5—N1—C1—C2−2.8 (5)Ir1—N2—C16—C173.3 (3)
Ir1—N1—C1—C2172.8 (2)C14—C15—C16—N2−2.0 (5)
N1—C1—C2—C3−0.6 (5)C14—C15—C16—C17175.3 (3)
C1—C2—C3—C42.6 (5)N2—C16—C17—C18176.5 (3)
C2—C3—C4—C5−1.3 (5)C15—C16—C17—C18−1.0 (5)
C1—N1—C5—C44.2 (4)N2—C16—C17—C22−0.8 (4)
Ir1—N1—C5—C4−171.9 (2)C15—C16—C17—C22−178.3 (3)
C1—N1—C5—C6−176.3 (3)C22—C17—C18—C19−0.7 (5)
Ir1—N1—C5—C67.7 (3)C16—C17—C18—C19−177.8 (3)
C3—C4—C5—N1−2.1 (5)C17—C18—C19—C200.3 (5)
C3—C4—C5—C6178.4 (3)C18—C19—C20—C21−0.3 (5)
N1—C5—C6—C7175.6 (3)C19—C20—C21—C220.7 (5)
C4—C5—C6—C7−4.9 (5)C20—C21—C22—C17−1.0 (5)
N1—C5—C6—C11−2.6 (4)C20—C21—C22—Ir1179.5 (3)
C4—C5—C6—C11176.9 (3)C18—C17—C22—C211.0 (5)
C11—C6—C7—C8−0.2 (5)C16—C17—C22—C21178.3 (3)
C5—C6—C7—C8−178.3 (3)C18—C17—C22—Ir1−179.5 (2)
C6—C7—C8—C90.2 (5)C16—C17—C22—Ir1−2.1 (3)
C7—C8—C9—C10−0.3 (5)C11—Ir1—C22—C2186.9 (3)
C8—C9—C10—C110.4 (5)N1—Ir1—C22—C216.5 (3)
C9—C10—C11—C6−0.3 (5)N2—Ir1—C22—C21−177.5 (3)
C9—C10—C11—Ir1−177.7 (3)N3—Ir1—C22—C21−91.4 (3)
C7—C6—C11—C100.2 (5)C11—Ir1—C22—C17−92.6 (2)
C5—C6—C11—C10178.5 (3)N1—Ir1—C22—C17−173.0 (2)
C7—C6—C11—Ir1178.0 (2)N2—Ir1—C22—C173.0 (2)
C5—C6—C11—Ir1−3.7 (4)N3—Ir1—C22—C1789.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl1i0.952.783.600 (3)145
C14—H14A···Cl1ii0.952.803.470 (3)129
C14—H14A···C23iii0.952.693.431 (4)135
C8—H8A···C16iv0.952.793.595 (4)143
C8—H8A···C17iv0.952.723.628 (4)159
C8—H8A···C18iv0.952.793.705 (4)163

Symmetry codes: (i) −x, −y+1, −z; (ii) x, −y+1/2, z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) x+1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5023).

References

  • Blasberg, F., Bats, J. W., Bolte, M., Lerner, H.-W. & Wagner, M. (2010). Inorg. Chem. 49, 7435–7445. [PubMed]
  • Blasberg, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2011). J. Organomet. Chem. 696, 3593–3600.
  • Garces, F. O., Dedeian, K., Keder, N. L. & Watts, R. J. (1993). Acta Cryst. C49, 1117–1120.
  • Guo, S. L., Peters, F., Fabrizi de Biani, F., Bats, J. W., Herdtweck, E., Zanello, P. & Wagner, M. (2001). Inorg. Chem. 40, 4928–4936. [PubMed]
  • Jäkle, F., Polborn, K. & Wagner, M. (1996). Chem. Ber. 129, 603–606.
  • Kretz, T., Bats, J. W., Losi, S., Wolf, B., Lerner, H.-W., Lang, M., Zanello, P. & Wagner, M. (2006). Dalton Trans.pp. 4914–4921. [PubMed]
  • Lowry, M. S., Hudson, W. R., Pascal-Jr, R. A. & Bernhard, S. (2004). J. Am. Chem. Soc. 126, 14129–14135. [PubMed]
  • Margraf, G., Kretz, T., Fabrizi de Biani, F., Laschi, F., Losi, S., Zanello, P., Bats, J. W., Wolf, B., Remović-Langer, K., Lang, M., Prokofiev, A., Assmus, W., Lerner, H.-W. & Wagner, M. (2006). Inorg. Chem. 45, 1277–1288. [PubMed]
  • McGee, K. A. & Mann, K. R. (2007). Inorg. Chem. 46, 7800–7809. [PubMed]
  • Phan, N. H., Halasz, I., Opahle, I., Alig, E., Fink, L., Bats, J. W., Cong, P. T., Lerner, H.-W., Sarkar, B., Wolf, B., Jeschke, H. O., Lang, M., Valentí, R., Dinnebier, R. & Wagner, M. (2011). CrystEngComm, 13, 391–395.
  • Scheuermann, S., Kretz, T., Vitze, H., Bats, J. W., Bolte, M., Lerner, H.-W. & Wagner, M. (2008). Chem. Eur. J. 14, 2590–2601. [PubMed]
  • Scheuermann, S., Sarkar, B., Bolte, M., Bats, J. W., Lerner, H.-W. & Wagner, M. (2009). Inorg. Chem. 48, 9385–9392. [PubMed]
  • Sheldrick, G. M. (2000). SADABSUniversity of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shu, Q., Bats, J. W. & Schmittel, M. (2011). Inorg. Chem. 50, 10531–10533. [PubMed]
  • Siemens (1995). SMART and SAINTSiemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Yang, L., von Zelewsky, A., Nguyen, H. P., Muller, G., Labat, G. & Stoeckli-Evans, H. (2009). Inorg. Chim. Acta, 362, 3853–3856. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography