PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2011 August 1; 67(Pt 8): o1983–o1984.
Published online 2011 July 9. doi:  10.1107/S160053681102664X
PMCID: PMC3213440

2-[(E)-4-(Dimethyl­amino)­benzyl­idene]indan-1-one

Abstract

In the title compound, C18H17NO, the dihydro­indene ring system is approximately planar, with a maximum deviation of 0.041 (2) Å. This ring system is almost coplanar with the benzene ring, making a dihedral angle of 5.22 (9)°. In the crystal, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into chains along the b axis.

Related literature

For the background to dihydro­indene and its derivatives, see: Kohlhagen et al. (1998 [triangle]); Prasad et al. (2006 [triangle]); Tomar et al. (2007 [triangle]); Bhat et al. (2005 [triangle]); Trivedi et al. (2007 [triangle]); Solankee et al. (2010 [triangle]); Liu et al. (2003 [triangle]); Trivedi et al. (2008 [triangle]); Cheng et al. (2008 [triangle]). For a closely related structure, see: Ali et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-67-o1983-scheme1.jpg

Experimental

Crystal data

  • C18H17NO
  • M r = 263.33
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-67-o1983-efi1.jpg
  • a = 30.024 (5) Å
  • b = 5.9898 (9) Å
  • c = 7.6862 (11) Å
  • V = 1382.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 297 K
  • 0.46 × 0.33 × 0.06 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.965, T max = 0.995
  • 8530 measured reflections
  • 2147 independent reflections
  • 1657 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.099
  • S = 1.08
  • 2147 reflections
  • 183 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.12 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681102664X/wn2441sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681102664X/wn2441Isup2.hkl

Supplementary material file. DOI: 10.1107/S160053681102664X/wn2441Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to express their thanks to Universiti Sains Malaysia (USM), Penang, Malaysia, for providing research facilities. HKF and WSL also thank USM for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship.

supplementary crystallographic information

Comment

Novel dihydroindene derivatives are found to be novel Top1 inhibitors with better pharmacokinetic features than camptothecin (CPT). Their moderate biological activity prompted us to investigate their structure activity relationships and a number of the analogs have demonstrated potent cytotoxicity (Kohlhagen et al., 1998). The search for new potent antimicrobial agents with reduced toxicity and lower side effects is a continuous process (Prasad et al., 2006). One of the most frequently encountered groups of organic compounds in medicinal chemistry is dihydroindene its derivatives (Tomar et al., 2007). In addition, dihydroindene derivatives have shown activity against dermatophytes but not against other types of fungi. Dihydroindene derivatives are readily synthesized by the base-catalysed Claisen-Schmidt condensation of an aldehyde and an appropriate ketone in a polar solvent such as ethanol and yields may be variable, ranging from 5% to 80% (Tomar et al., 2007). The dihydroindene derivatives have a diverse range of biological activities, among which antimalarial, antitubercular, anti-inflammatory, cytotoxic, antioxidant, analgesic, antiviral and antimicrobial properties have been widely cited (Tomar et al., 2007; Bhat et al., 2005; Trivedi et al., 2007; Solankee et al., 2010; Liu et al., 2003; Trivedi et al., 2008; Cheng et al., 2008).

In the title compound (Fig. 1), the dihydroindene ring system (C8–C16) is approximately planar, with a maximum deviation of 0.041 (2) Å at atom C15. This ring system is almost coplanar with the benzene ring (C1–C6), with a dihedral angle of 5.22 (9)°. Bond lengths and angles are within the normal ranges and are comparable to those in the related crystal structure (Ali et al., 2010).

In the crystal packing (Fig. 2), intermolecular C9—H9A···O1 hydrogen bonds (Table 1) link the molecules into chains along the b axis.

Experimental

A mixture of 2,3-dihydro-1H-indene-1-one (0.001 mmol) and 4-nitrobenzaldehyde (0.001 mmol) was dissolved in methanol (10 ml) and to this mixture was added 30% sodium hydroxide solution (5 ml). The mixture was stirred for 5 h. After the completion of the reaction, as evident from TLC, the mixture was poured on to crushed ice, then neutralized with concentrated HCl. The precipitated solid was filtered, washed with water and recrystallized from ethanol to yield the title compound as light yellow crystals.

Refinement

All H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.93–0.97 Å]. A rotating group model was applied to the methyl groups. In the absence of significant anomalous scattering effects, 1725 Friedel pairs were merged for the final refinement.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C18H17NOF(000) = 560
Mr = 263.33Dx = 1.265 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2132 reflections
a = 30.024 (5) Åθ = 2.7–23.6°
b = 5.9898 (9) ŵ = 0.08 mm1
c = 7.6862 (11) ÅT = 297 K
V = 1382.3 (4) Å3Plate, yellow
Z = 40.46 × 0.33 × 0.06 mm

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer2147 independent reflections
Radiation source: fine-focus sealed tube1657 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −42→42
Tmin = 0.965, Tmax = 0.995k = −7→8
8530 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0455P)2 + 0.062P] where P = (Fo2 + 2Fc2)/3
2147 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = −0.12 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.33515 (5)0.7381 (2)0.9621 (3)0.0591 (4)
N10.58774 (5)0.0911 (3)0.8681 (3)0.0523 (4)
C10.49445 (7)0.4669 (3)0.9738 (3)0.0466 (5)
H1A0.49000.60051.03290.056*
C20.53678 (7)0.3789 (3)0.9663 (3)0.0474 (5)
H2A0.56010.45361.02070.057*
C30.54532 (6)0.1784 (3)0.8779 (3)0.0409 (4)
C40.50852 (6)0.0695 (3)0.8021 (3)0.0428 (4)
H4A0.5127−0.06570.74490.051*
C50.46634 (6)0.1601 (3)0.8111 (3)0.0418 (4)
H5A0.44280.08430.75950.050*
C60.45795 (6)0.3632 (3)0.8959 (2)0.0391 (4)
C70.41495 (6)0.4734 (3)0.9089 (3)0.0414 (4)
H7A0.41570.60950.96710.050*
C80.37449 (6)0.4142 (3)0.8522 (3)0.0405 (4)
C90.35932 (6)0.2075 (3)0.7567 (3)0.0443 (4)
H9A0.36640.07360.82210.053*
H9B0.37310.19790.64270.053*
C100.30926 (6)0.2391 (3)0.7417 (3)0.0426 (4)
C110.27778 (6)0.0936 (4)0.6759 (3)0.0502 (5)
H11A0.2863−0.04350.62980.060*
C120.23334 (7)0.1555 (4)0.6796 (3)0.0556 (5)
H12A0.21190.05940.63430.067*
C130.22019 (7)0.3589 (4)0.7499 (3)0.0572 (5)
H13A0.19020.39710.75180.069*
C140.25135 (7)0.5039 (3)0.8169 (3)0.0536 (5)
H14A0.24270.64010.86430.064*
C150.29614 (6)0.4420 (3)0.8119 (3)0.0431 (4)
C160.33507 (6)0.5593 (3)0.8853 (3)0.0433 (4)
C170.62544 (7)0.2311 (4)0.9114 (4)0.0648 (7)
H17A0.62430.26951.03260.097*
H17B0.62450.36490.84260.097*
H17C0.65260.15190.88760.097*
C180.59698 (7)−0.0926 (4)0.7520 (4)0.0626 (6)
H18A0.5777−0.21550.77920.094*
H18B0.6274−0.13820.76540.094*
H18C0.5920−0.04620.63400.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0587 (9)0.0423 (8)0.0762 (11)0.0033 (6)0.0014 (8)−0.0079 (8)
N10.0402 (8)0.0582 (10)0.0585 (11)0.0032 (7)−0.0044 (8)−0.0105 (9)
C10.0468 (11)0.0445 (10)0.0485 (11)−0.0034 (8)−0.0011 (9)−0.0097 (9)
C20.0422 (10)0.0517 (11)0.0484 (11)−0.0068 (8)−0.0055 (9)−0.0099 (10)
C30.0397 (9)0.0456 (9)0.0375 (9)−0.0028 (7)−0.0002 (8)0.0006 (8)
C40.0441 (10)0.0387 (9)0.0457 (11)−0.0029 (7)−0.0001 (8)−0.0041 (8)
C50.0394 (9)0.0399 (9)0.0462 (10)−0.0074 (7)−0.0027 (8)−0.0035 (8)
C60.0391 (9)0.0397 (9)0.0384 (10)−0.0046 (7)0.0014 (8)0.0010 (8)
C70.0459 (10)0.0365 (9)0.0419 (11)−0.0027 (7)0.0037 (8)0.0009 (8)
C80.0404 (9)0.0376 (9)0.0437 (10)−0.0016 (7)0.0037 (8)0.0023 (8)
C90.0388 (9)0.0434 (9)0.0507 (11)−0.0009 (7)0.0016 (8)−0.0020 (9)
C100.0400 (9)0.0463 (10)0.0415 (10)−0.0026 (7)−0.0001 (8)0.0061 (9)
C110.0499 (11)0.0533 (11)0.0474 (11)−0.0051 (9)−0.0020 (9)0.0017 (10)
C120.0455 (11)0.0691 (14)0.0523 (12)−0.0102 (10)−0.0053 (10)0.0080 (12)
C130.0401 (10)0.0709 (14)0.0606 (13)0.0029 (9)−0.0030 (10)0.0141 (12)
C140.0477 (10)0.0536 (10)0.0597 (13)0.0070 (9)0.0015 (10)0.0096 (11)
C150.0414 (9)0.0437 (9)0.0442 (10)−0.0005 (7)0.0016 (8)0.0078 (9)
C160.0451 (10)0.0373 (9)0.0476 (11)0.0003 (7)0.0037 (9)0.0072 (9)
C170.0396 (10)0.0734 (15)0.0815 (18)−0.0012 (10)−0.0097 (11)−0.0083 (14)
C180.0513 (12)0.0626 (13)0.0738 (16)0.0101 (10)0.0024 (12)−0.0112 (13)

Geometric parameters (Å, °)

O1—C161.223 (2)C9—H9A0.9700
N1—C31.379 (2)C9—H9B0.9700
N1—C181.444 (3)C10—C111.382 (3)
N1—C171.448 (3)C10—C151.387 (3)
C1—C21.377 (3)C11—C121.385 (3)
C1—C61.394 (3)C11—H11A0.9300
C1—H1A0.9300C12—C131.390 (3)
C2—C31.403 (3)C12—H12A0.9300
C2—H2A0.9300C13—C141.377 (3)
C3—C41.409 (3)C13—H13A0.9300
C4—C51.380 (2)C14—C151.396 (3)
C4—H4A0.9300C14—H14A0.9300
C5—C61.403 (3)C15—C161.476 (3)
C5—H5A0.9300C17—H17A0.9600
C6—C71.454 (2)C17—H17B0.9600
C7—C81.339 (2)C17—H17C0.9600
C7—H7A0.9300C18—H18A0.9600
C8—C161.490 (2)C18—H18B0.9600
C8—C91.510 (3)C18—H18C0.9600
C9—C101.519 (3)
C3—N1—C18120.01 (17)C11—C10—C15120.07 (18)
C3—N1—C17119.35 (17)C11—C10—C9128.74 (18)
C18—N1—C17115.67 (18)C15—C10—C9111.15 (16)
C2—C1—C6122.48 (19)C10—C11—C12118.9 (2)
C2—C1—H1A118.8C10—C11—H11A120.6
C6—C1—H1A118.8C12—C11—H11A120.6
C1—C2—C3121.07 (17)C11—C12—C13121.1 (2)
C1—C2—H2A119.5C11—C12—H12A119.5
C3—C2—H2A119.5C13—C12—H12A119.5
N1—C3—C2121.30 (16)C14—C13—C12120.4 (2)
N1—C3—C4121.75 (17)C14—C13—H13A119.8
C2—C3—C4116.95 (17)C12—C13—H13A119.8
C5—C4—C3121.12 (18)C13—C14—C15118.5 (2)
C5—C4—H4A119.4C13—C14—H14A120.8
C3—C4—H4A119.4C15—C14—H14A120.8
C4—C5—C6121.96 (16)C10—C15—C14121.14 (18)
C4—C5—H5A119.0C10—C15—C16109.94 (16)
C6—C5—H5A119.0C14—C15—C16128.78 (19)
C1—C6—C5116.40 (16)O1—C16—C15127.09 (17)
C1—C6—C7117.79 (17)O1—C16—C8126.27 (17)
C5—C6—C7125.81 (16)C15—C16—C8106.62 (16)
C8—C7—C6131.55 (17)N1—C17—H17A109.5
C8—C7—H7A114.2N1—C17—H17B109.5
C6—C7—H7A114.2H17A—C17—H17B109.5
C7—C8—C16120.69 (17)N1—C17—H17C109.5
C7—C8—C9130.51 (16)H17A—C17—H17C109.5
C16—C8—C9108.78 (15)H17B—C17—H17C109.5
C8—C9—C10103.47 (15)N1—C18—H18A109.5
C8—C9—H9A111.1N1—C18—H18B109.5
C10—C9—H9A111.1H18A—C18—H18B109.5
C8—C9—H9B111.1N1—C18—H18C109.5
C10—C9—H9B111.1H18A—C18—H18C109.5
H9A—C9—H9B109.0H18B—C18—H18C109.5
C6—C1—C2—C30.3 (3)C8—C9—C10—C152.3 (2)
C18—N1—C3—C2−169.1 (2)C15—C10—C11—C120.7 (3)
C17—N1—C3—C2−15.2 (3)C9—C10—C11—C12178.2 (2)
C18—N1—C3—C411.7 (3)C10—C11—C12—C13−0.7 (3)
C17—N1—C3—C4165.7 (2)C11—C12—C13—C140.3 (4)
C1—C2—C3—N1179.1 (2)C12—C13—C14—C150.1 (3)
C1—C2—C3—C4−1.7 (3)C11—C10—C15—C14−0.3 (3)
N1—C3—C4—C5−179.24 (19)C9—C10—C15—C14−178.2 (2)
C2—C3—C4—C51.6 (3)C11—C10—C15—C16175.67 (19)
C3—C4—C5—C6−0.2 (3)C9—C10—C15—C16−2.2 (2)
C2—C1—C6—C51.1 (3)C13—C14—C15—C10−0.1 (3)
C2—C1—C6—C7−178.73 (19)C13—C14—C15—C16−175.3 (2)
C4—C5—C6—C1−1.2 (3)C10—C15—C16—O1−177.3 (2)
C4—C5—C6—C7178.63 (19)C14—C15—C16—O1−1.7 (4)
C1—C6—C7—C8−178.3 (2)C10—C15—C16—C81.1 (2)
C5—C6—C7—C81.8 (3)C14—C15—C16—C8176.7 (2)
C6—C7—C8—C16179.24 (19)C7—C8—C16—O10.4 (3)
C6—C7—C8—C91.3 (4)C9—C8—C16—O1178.8 (2)
C7—C8—C9—C10176.6 (2)C7—C8—C16—C15−178.01 (18)
C16—C8—C9—C10−1.5 (2)C9—C8—C16—C150.4 (2)
C8—C9—C10—C11−175.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.972.473.305 (3)145

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2441).

References

  • Ali, M. A., Ismail, R., Choon, T. S., Rosli, M. M. & Fun, H.-K. (2010). Acta Cryst. E66, o2878. [PMC free article] [PubMed]
  • Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavelb, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180. [PubMed]
  • Bruker (2009). APEX2, SAINT and SADABSBruker AXS Inc., Madison, Wisconsin, USA.
  • Cheng, J.-H., Hung, C.-F., Yang, S.-C., Wang, J.-P., Won, S.-J. & Lin, C.-N. (2008). Bioorg. Med. Chem. 16, 7270–7276. [PubMed]
  • Kohlhagen, G., Paull, K. D., Cushman, M., Nagafuji, P. & Pommier, Y. (1998). Mol. Pharmacol. 54, 50–58. [PubMed]
  • Liu, M., Wilairat, P., Croft, S. L., Tan, A. L.-C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729–2738. [PubMed]
  • Prasad, Y. R., Ravikumar, P., Srivani, N. & Rao, A. S. (2006). Int. J. Chem. Sci. 4, 905–909.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Solankee, A., Kapadia, K., Ana, C., Sokovic, M., Doytchinova, I. & Geronikaki, A. (2010). Eur. J. Med. Chem. 45, 510–518. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett. 17, 5321–5324. [PubMed]
  • Trivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Joshi, S. K., Pannecouque, C. C., De Clercq, E. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472–8474.
  • Trivedi, A. R., Dodiya, D. K., Ravat, N. R. & Shah, V. H. (2008). ARKIVOC, xi, 131–141.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography