PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Aug 1, 2011; 67(Pt 8): o1934.
Published online Jul 6, 2011. doi:  10.1107/S1600536811026122
PMCID: PMC3212321
2-[(E)-(2,4,6-Trichloro­phen­yl)imino­meth­yl]phenol
Hoong-Kun Fun,a* Ching Kheng Quah,a§ S. Viveka,b D. J. Madhukumar,b and G. K. Nagarajab
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
bDepartment of Chemistry, Mangalore University, Karnataka, India
Correspondence e-mail: hkfun/at/usm.my
Thomson Reuters ResearcherID: A-3561-2009.
§Thomson Reuters ResearcherID: A-5525-2009.
Received June 28, 2011; Accepted July 1, 2011.
Abstract
The title mol­ecule, C13H8Cl3NO, exists in a trans configuration with respect to the C=N bond [1.278 (2) Å]. The benzene rings form a dihedral angle of 24.64 (11)°. The mol­ecular structure is stabilized by an intra­molecular O—H(...)N hydrogen bond, which generates an S(6) ring motif. In the crystal, π–π stacking inter­actions [centroid–centroid distances = 3.6893 (14) Å] are observed.
Related literature
For general background to and the pharmacological activity of Schiff base compounds, see: Shapiro (1998 [triangle]); Villar et al. (2004 [triangle]); Venugopal & Jayashree (2008 [triangle]); Pandey et al. (2003 [triangle]); Bhat et al. (2005 [triangle]); Wadher et al. (2009 [triangle]). For related structures, see: Fun et al. (2011a [triangle],b [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For standard bond-length data, see: Allen et al. (1987 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-67-o1934-scheme1.jpg Object name is e-67-o1934-scheme1.jpg
Crystal data
  • C13H8Cl3NO
  • M r = 300.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-o1934-efi1.jpg
  • a = 12.8847 (16) Å
  • b = 6.9505 (9) Å
  • c = 14.4265 (18) Å
  • β = 96.612 (2)°
  • V = 1283.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.70 mm−1
  • T = 296 K
  • 0.36 × 0.19 × 0.14 mm
Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.785, T max = 0.908
  • 10136 measured reflections
  • 3782 independent reflections
  • 2586 reflections with I > 2σ(I)
  • R int = 0.027
Refinement
  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.124
  • S = 1.02
  • 3782 reflections
  • 167 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.44 e Å−3
Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811026122/lh5276sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026122/lh5276Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811026122/lh5276Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).
supplementary crystallographic information
Comment
Schiff bases are the important compound owing to their wide range of biological activities and industrial application. The synthesis and structural research of Schiff bases are derived from aldehydes and amines bearing various alkyl and aryl N-substituents. Schiff base ligands may contain a variety of substituents with different electron-donating or electron-withdrawing groups and therefore may have interesting chemical properties. They have attracted particular interest due to their biological activities (Shapiro, 1998). They have been found to posses the pharmacological activities such as antimalarial, anticancer (Villar et al., 2004) antibacterial (Venugopal & Jayashree, 2008) antifungal (Pandey et al., 2003) antitubercular (Bhat et al., 2005), anti-inflammatory and antimicrobial (Wadher et al., 2009) properties.
In the title molecule (Fig. 1), the benzene rings (C1-C6 and C8-C13) form a dihedral angle of 24.64 (11)°. The title molecule exists in trans configuration with respect to the C7═N1 bond [C7═N1 = 1.278 (2) Å]. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2011a,b). The molecular structure is stabilized by an intramolecular O1–H1O1···N1 hydrogen bond (Table 1) which generates a S(6) ring motif (Fig. 1, Bernstein et al., 1995).
In the crystal packing, π-π stacking interactions between the centroid of C1-C6 (Cg1) and C8-C13 (Cg2) benzene rings, with Cg1···Cg2i distance of 3.6893 (14) Å [symmetry code: (i) -x, -1/2+y, 3/2-z] are observed. No significant intermolecular hydrogen bonds are observed.
Experimental
A mixture of salicylaldehyde (0.01 mol) and 2,4,6-trichloroaniline (0.01 mol) was dissolved in a minimum amount of ethanol, followed by addition of 2 mL glacial acetic acid. The mixture was refluxed gently for 4-5 h. The reaction was monitored by TLC. After completion of the reaction, the mixture was poured into a beaker containing crushed ice. The precipitate obtained was filtered, dried and recrystallized from ethanol. Yield: 68%, m.p. 425-426 K.
Refinement
H1O1 atom was located in a difference Fourier map and refined freely [O1–H1O1 = 0.79 (3) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak and the deepest hole are located at 0.93 and 0.85 Å from Cl3, respectively.
Figures
Fig. 1.
Fig. 1.
The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. An intramolecular hydrogen bond is shown as a dashed line.
Crystal data
C13H8Cl3NOF(000) = 608
Mr = 300.55Dx = 1.556 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3223 reflections
a = 12.8847 (16) Åθ = 2.9–30.0°
b = 6.9505 (9) ŵ = 0.70 mm1
c = 14.4265 (18) ÅT = 296 K
β = 96.612 (2)°Block, yellow
V = 1283.4 (3) Å30.36 × 0.19 × 0.14 mm
Z = 4
Data collection
Bruker SMART APEXII DUO CCD area-detector diffractometer3782 independent reflections
Radiation source: fine-focus sealed tube2586 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 30.2°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −18→18
Tmin = 0.785, Tmax = 0.908k = −9→9
10136 measured reflectionsl = −20→20
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0489P)2 + 0.6136P] where P = (Fo2 + 2Fc2)/3
3782 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.44 e Å3
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
Cl10.05175 (4)0.34050 (9)0.92951 (3)0.05264 (16)
Cl20.44455 (4)0.27949 (11)0.84597 (5)0.0669 (2)
Cl30.35845 (4)0.16620 (13)0.63858 (4)0.0723 (2)
O1−0.20343 (13)0.2343 (3)0.77771 (11)0.0562 (4)
N1−0.01212 (11)0.2621 (2)0.73161 (11)0.0370 (3)
C10.13702 (14)0.3001 (3)0.84736 (13)0.0368 (4)
C20.24358 (14)0.3061 (3)0.87539 (14)0.0427 (4)
H2A0.26850.33440.93690.051*
C30.31237 (14)0.2693 (3)0.81056 (15)0.0428 (4)
C40.27450 (14)0.2244 (3)0.71929 (14)0.0427 (4)
C50.16785 (14)0.2223 (3)0.69162 (13)0.0408 (4)
H5A0.14320.19310.63010.049*
C60.09726 (13)0.2636 (3)0.75513 (12)0.0346 (4)
C7−0.05235 (13)0.3079 (3)0.64944 (13)0.0372 (4)
H7A−0.00840.34370.60560.045*
C8−0.16440 (14)0.3060 (3)0.62241 (14)0.0387 (4)
C9−0.20251 (16)0.3408 (4)0.52901 (15)0.0514 (5)
H9A−0.15580.36400.48570.062*
C10−0.30845 (17)0.3411 (4)0.50043 (18)0.0628 (7)
H10A−0.33330.36230.43820.075*
C11−0.37712 (17)0.3093 (4)0.56579 (19)0.0638 (7)
H11A−0.44860.31090.54710.077*
C12−0.34176 (16)0.2754 (4)0.65778 (19)0.0561 (6)
H12A−0.38930.25490.70060.067*
C13−0.23490 (15)0.2716 (3)0.68736 (15)0.0430 (4)
H1O1−0.142 (2)0.238 (5)0.787 (2)0.077 (10)*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
Cl10.0521 (3)0.0677 (4)0.0399 (2)0.0004 (3)0.0130 (2)−0.0002 (2)
Cl20.0322 (2)0.0865 (5)0.0786 (4)−0.0046 (3)−0.0083 (2)0.0036 (3)
Cl30.0415 (3)0.1152 (6)0.0624 (4)0.0192 (3)0.0154 (2)−0.0023 (4)
O10.0452 (8)0.0715 (12)0.0537 (9)0.0035 (8)0.0128 (7)0.0064 (8)
N10.0303 (7)0.0408 (9)0.0400 (8)0.0040 (6)0.0037 (6)−0.0019 (7)
C10.0366 (8)0.0376 (10)0.0365 (8)−0.0005 (8)0.0054 (7)0.0016 (8)
C20.0388 (9)0.0464 (12)0.0407 (9)−0.0037 (8)−0.0044 (7)0.0007 (8)
C30.0300 (8)0.0448 (11)0.0518 (11)−0.0015 (8)−0.0036 (7)0.0060 (9)
C40.0319 (8)0.0509 (12)0.0459 (10)0.0077 (8)0.0070 (7)0.0037 (9)
C50.0337 (8)0.0502 (12)0.0379 (9)0.0065 (8)0.0012 (7)−0.0009 (8)
C60.0291 (7)0.0349 (9)0.0396 (9)0.0009 (7)0.0032 (6)0.0000 (7)
C70.0309 (8)0.0399 (10)0.0411 (9)0.0031 (7)0.0049 (7)−0.0029 (8)
C80.0305 (8)0.0391 (10)0.0460 (9)0.0031 (7)0.0020 (7)−0.0049 (8)
C90.0404 (10)0.0649 (15)0.0473 (10)0.0039 (10)−0.0016 (8)−0.0046 (10)
C100.0443 (11)0.0808 (19)0.0592 (13)0.0061 (11)−0.0114 (10)−0.0079 (13)
C110.0352 (10)0.0735 (18)0.0790 (17)0.0022 (11)−0.0098 (10)−0.0134 (14)
C120.0346 (9)0.0597 (15)0.0752 (15)−0.0016 (10)0.0109 (10)−0.0075 (12)
C130.0360 (9)0.0391 (11)0.0544 (11)0.0025 (8)0.0072 (8)−0.0047 (9)
Geometric parameters (Å, °)
Cl1—C11.7292 (19)C5—H5A0.9300
Cl2—C31.7222 (18)C7—C81.452 (2)
Cl3—C41.726 (2)C7—H7A0.9300
O1—C131.345 (3)C8—C131.399 (3)
O1—H1O10.79 (3)C8—C91.401 (3)
N1—C71.278 (2)C9—C101.380 (3)
N1—C61.411 (2)C9—H9A0.9300
C1—C21.387 (2)C10—C111.383 (4)
C1—C61.393 (2)C10—H10A0.9300
C2—C31.384 (3)C11—C121.373 (4)
C2—H2A0.9300C11—H11A0.9300
C3—C41.386 (3)C12—C131.394 (3)
C4—C51.386 (2)C12—H12A0.9300
C5—C61.393 (2)
C13—O1—H1O1110 (2)N1—C7—H7A119.0
C7—N1—C6120.55 (16)C8—C7—H7A119.0
C2—C1—C6121.80 (17)C13—C8—C9119.42 (18)
C2—C1—Cl1118.76 (14)C13—C8—C7121.61 (18)
C6—C1—Cl1119.44 (13)C9—C8—C7118.97 (18)
C3—C2—C1119.14 (17)C10—C9—C8120.8 (2)
C3—C2—H2A120.4C10—C9—H9A119.6
C1—C2—H2A120.4C8—C9—H9A119.6
C2—C3—C4120.04 (17)C9—C10—C11119.0 (2)
C2—C3—Cl2118.70 (15)C9—C10—H10A120.5
C4—C3—Cl2121.26 (16)C11—C10—H10A120.5
C3—C4—C5120.32 (18)C12—C11—C10121.3 (2)
C3—C4—Cl3120.94 (15)C12—C11—H11A119.4
C5—C4—Cl3118.73 (15)C10—C11—H11A119.4
C4—C5—C6120.60 (17)C11—C12—C13120.4 (2)
C4—C5—H5A119.7C11—C12—H12A119.8
C6—C5—H5A119.7C13—C12—H12A119.8
C1—C6—C5118.01 (16)O1—C13—C12118.5 (2)
C1—C6—N1118.57 (16)O1—C13—C8122.39 (18)
C5—C6—N1123.37 (16)C12—C13—C8119.1 (2)
N1—C7—C8122.10 (17)
C6—C1—C2—C3−1.9 (3)C7—N1—C6—C1151.17 (19)
Cl1—C1—C2—C3178.45 (16)C7—N1—C6—C5−31.6 (3)
C1—C2—C3—C4−0.9 (3)C6—N1—C7—C8179.28 (17)
C1—C2—C3—Cl2179.37 (16)N1—C7—C8—C136.2 (3)
C2—C3—C4—C52.1 (3)N1—C7—C8—C9−174.2 (2)
Cl2—C3—C4—C5−178.18 (17)C13—C8—C9—C10−0.2 (4)
C2—C3—C4—Cl3−176.72 (17)C7—C8—C9—C10−179.7 (2)
Cl2—C3—C4—Cl33.0 (3)C8—C9—C10—C111.0 (4)
C3—C4—C5—C6−0.5 (3)C9—C10—C11—C12−0.8 (4)
Cl3—C4—C5—C6178.34 (16)C10—C11—C12—C13−0.3 (4)
C2—C1—C6—C53.4 (3)C11—C12—C13—O1−178.8 (2)
Cl1—C1—C6—C5−176.92 (15)C11—C12—C13—C81.1 (4)
C2—C1—C6—N1−179.22 (18)C9—C8—C13—O1179.0 (2)
Cl1—C1—C6—N10.5 (3)C7—C8—C13—O1−1.5 (3)
C4—C5—C6—C1−2.2 (3)C9—C8—C13—C12−0.9 (3)
C4—C5—C6—N1−179.41 (19)C7—C8—C13—C12178.7 (2)
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.79 (3)1.94 (3)2.633 (2)146 (3)
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5276).
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Bhat, M. A., Imran, M., Khan, S. A. & Siddiqui, N. (2005). J. Pharm. Sci. 67, 151–159.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Nagaraja, G. K. (2011a). Acta Cryst. E67, o1933. [PMC free article] [PubMed]
  • Fun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Prasad, D. J. (2011b). Acta Cryst. E67, o1932. [PMC free article] [PubMed]
  • Pandey, S. N., Lakshmi, V. S. & Pandey, A. (2003). Indian J. Pharm. Sci. 65, 213–222.
  • Shapiro, H. K. (1998). Am. J. Ther. 5, 323–353. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Venugopal, K. N. & Jayashree, B. S. (2008). Indian J. Pharm. Sci. 70, 88–91. [PMC free article] [PubMed]
  • Villar, R., Encio, I., Migliaccio, M., Gil, M. G. & Martinez-Merino, V. (2004). Bioorg. Med. Chem. 12, 963–968. [PubMed]
  • Wadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. PharmTech Res. 1, 22–33.
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography