PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Aug 1, 2011; 67(Pt 8): o1932.
Published online Jul 6, 2011. doi:  10.1107/S1600536811026109
PMCID: PMC3212319
N-[(E)-4-Chloro­benzyl­idene]-2,4-dimethyl­aniline
Hoong-Kun Fun,a* Ching Kheng Quah,a§ S. Viveka,b D. J. Madhukumar,b and D. Jagadeesh Prasadb
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
bDepartment of Chemistry, Mangalore University, Karnataka, India
Correspondence e-mail: hkfun/at/usm.my
Thomson Reuters ResearcherID: A-3561-2009.
§Thomson Reuters ResearcherID: A-5525-2009.
Received June 28, 2011; Accepted July 1, 2011.
Abstract
The title mol­ecule, C15H14ClN, exists in a trans configuration with respect to the C=N bond [1.2813 (16) Å]. The dihedral angle between the benzene rings is 52.91 (6)°. The crystal structure is stabilized by weak inter­molecular C—H(...)π inter­actions.
Related literature
For general background to and the pharmacological activity of Schiff base compounds, see: Ittel et al. (2000 [triangle]); Shah et al. (1992 [triangle]); Cimerman et al. (2000 [triangle]); Pandeya et al. (1999 [triangle]); More et al. (2001 [triangle]); Cimerman & Stefanac (2001 [triangle]); Galic et al. (1997 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]). For standard bond-length data, see: Allen et al. (1987 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-67-o1932-scheme1.jpg Object name is e-67-o1932-scheme1.jpg
Crystal data
  • C15H14ClN
  • M r = 243.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-o1932-efi1.jpg
  • a = 7.2852 (1) Å
  • b = 15.2715 (2) Å
  • c = 11.5382 (1) Å
  • β = 96.304 (1)°
  • V = 1275.93 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 100 K
  • 0.40 × 0.24 × 0.20 mm
Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.898, T max = 0.946
  • 14547 measured reflections
  • 3975 independent reflections
  • 3800 reflections with I > 2σ(I)
  • R int = 0.020
Refinement
  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.078
  • S = 1.04
  • 3975 reflections
  • 156 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.20 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1919 Friedel pairs
  • Flack parameter: 0.04 (4)
Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811026109/lh5274sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026109/lh5274Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811026109/lh5274Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).
supplementary crystallographic information
Comment
The chemistry of the carbon-nitrogen double bond plays a vital role in the progress of science. Schiff-base compounds have been used as fine chemicals and medical substrates. Recently, multi-dentate complexes of iron and nickel showed high activities of ethylene oligomerization and polymerization (Ittel et al., 2000). Schiff bases have a wide variety of applications in many fields, e.g., biological, inorganic and analytical chemistry (Cimerman et al., 2000). They are known to exhibit potent antibacterial, anticonvulsant, anti-inflammatory activities (Shah et al., 1992). In addition, some Schiff bases show pharmacologically useful activities like anticancer (Pandeya et al., 1999), anti-hypertensive and hypnotic (More et al., 2001) properties. Unfortunately, most Schiff bases are chemically unstable and show a tendency to be involved in various equilibria, like tautomeric interconversions, hydrolysis or formation of ionized species (Cimerman & Stefanac, 2001; Galic et al., 1997). Therefore, successful application of Schiff bases requires a careful study of their characteristics.
The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The title compound exists in trans configuration with respect to the C7═N1 bond [C7═N1 = 1.2813 (16) Å]. The benzene rings (C1-C6 and C8-C13) form a dihedral angle of 52.91 (6)°.
The crystal structure is stabilized by weak intermolecular C12–H12A···Cg1i, C14–H14A···Cg1ii, C2–H2A···Cg2iii and C4–H4A···Cg2iv interactions (see Table 1 for symmetry codes), where Cg1 and Cg2 are the centroid of C1-C6 and C8-C13 benzene rings, respectively. No significant classical intermolecular hydrogen bonds are observed.
Experimental
Equimolar amounts of of 4-chloro benzaldehyde and 2,4 dimethyl aniline were dissolved in a minimum amount of ethanol, followed by addition of 2 ml glacial acetic acid. The solution was refluxed for 8 h then cooled to room temperature and poured into ice cold water. The solid product was collected through filtration and then dried at 353 K. The product was dissolved in ethanol, recrystallized and then dried to give colourless crystals. Yield: 75%, m.p. 432-435 K.
Refinement
All H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group. The highest residual electron density peak is located at 0.69 Å from C12 and the deepest hole is located at 0.15 Å from H15B.
Figures
Fig. 1.
Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
Crystal data
C15H14ClNF(000) = 512
Mr = 243.72Dx = 1.269 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 9896 reflections
a = 7.2852 (1) Åθ = 2.7–31.0°
b = 15.2715 (2) ŵ = 0.28 mm1
c = 11.5382 (1) ÅT = 100 K
β = 96.304 (1)°Block, colourless
V = 1275.93 (3) Å30.40 × 0.24 × 0.20 mm
Z = 4
Data collection
Bruker SMART APEXII CCD area-detector diffractometer3975 independent reflections
Radiation source: fine-focus sealed tube3800 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 31.1°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −10→10
Tmin = 0.898, Tmax = 0.946k = −17→22
14547 measured reflectionsl = −16→16
Refinement
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.078w = 1/[σ2(Fo2) + (0.0435P)2 + 0.4511P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3975 reflectionsΔρmax = 0.32 e Å3
156 parametersΔρmin = −0.20 e Å3
2 restraintsAbsolute structure: Flack (1983), 1919 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.04 (4)
Special details
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
Cl11.00011 (4)0.620805 (19)0.24699 (3)0.02374 (8)
N10.98639 (15)0.21574 (7)0.00510 (9)0.0164 (2)
C11.10819 (17)0.36449 (8)0.25068 (11)0.0164 (2)
H1A1.16600.32260.30360.020*
C21.09740 (18)0.45134 (9)0.28532 (11)0.0174 (2)
H2A1.14690.46930.36120.021*
C31.01230 (18)0.51134 (8)0.20614 (11)0.0172 (2)
C40.93749 (17)0.48677 (9)0.09481 (11)0.0180 (2)
H4A0.87860.52880.04250.022*
C50.95032 (17)0.39987 (8)0.06141 (11)0.0166 (2)
H5A0.90110.3823−0.01470.020*
C61.03527 (17)0.33777 (8)0.13907 (11)0.0152 (2)
C71.04654 (18)0.24507 (8)0.10622 (11)0.0163 (2)
H7A1.10110.20490.16280.020*
C80.99097 (17)0.12365 (8)−0.01051 (11)0.0153 (2)
C91.05963 (17)0.08957 (8)−0.11026 (11)0.0151 (2)
C101.05936 (17)−0.00135 (8)−0.12576 (11)0.0164 (2)
H10A1.1084−0.0250−0.19200.020*
C110.98889 (18)−0.05863 (8)−0.04642 (11)0.0177 (2)
C120.91927 (18)−0.02310 (9)0.05076 (11)0.0182 (2)
H12A0.8702−0.06080.10520.022*
C130.92063 (18)0.06723 (8)0.06920 (11)0.0172 (2)
H13A0.87350.09050.13630.021*
C141.1312 (2)0.14980 (9)−0.19821 (12)0.0212 (3)
H14A1.17390.1151−0.26150.032*
H14B1.23420.1844−0.16030.032*
H14C1.03210.1892−0.23010.032*
C150.9863 (2)−0.15650 (9)−0.06663 (13)0.0244 (3)
H15A0.8998−0.1840−0.01830.037*
H15B1.1104−0.1803−0.04570.037*
H15C0.9469−0.1686−0.14900.037*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
Cl10.03157 (16)0.01487 (12)0.02478 (15)0.00105 (13)0.00319 (11)−0.00480 (12)
N10.0188 (5)0.0143 (5)0.0163 (5)−0.0001 (4)0.0033 (4)−0.0014 (4)
C10.0181 (6)0.0165 (5)0.0144 (5)−0.0008 (4)0.0007 (4)−0.0001 (4)
C20.0194 (6)0.0181 (5)0.0144 (5)−0.0012 (5)0.0011 (4)−0.0029 (4)
C30.0189 (6)0.0133 (5)0.0198 (6)−0.0009 (4)0.0045 (5)−0.0034 (4)
C40.0188 (6)0.0163 (6)0.0187 (6)0.0012 (4)0.0010 (4)0.0005 (4)
C50.0187 (6)0.0161 (5)0.0149 (5)0.0001 (4)0.0015 (4)−0.0014 (4)
C60.0159 (5)0.0141 (5)0.0157 (5)−0.0004 (4)0.0025 (4)−0.0017 (4)
C70.0168 (5)0.0145 (5)0.0178 (5)0.0002 (4)0.0024 (4)−0.0004 (4)
C80.0162 (5)0.0134 (5)0.0160 (6)−0.0001 (4)0.0009 (4)−0.0009 (4)
C90.0164 (5)0.0149 (5)0.0138 (5)−0.0010 (4)0.0011 (4)−0.0012 (4)
C100.0178 (5)0.0160 (5)0.0155 (5)0.0003 (4)0.0016 (4)−0.0025 (4)
C110.0185 (6)0.0146 (5)0.0191 (6)−0.0012 (5)−0.0019 (5)−0.0005 (4)
C120.0198 (6)0.0168 (6)0.0180 (6)−0.0029 (5)0.0011 (5)0.0026 (4)
C130.0204 (6)0.0173 (6)0.0141 (5)−0.0008 (5)0.0024 (4)−0.0005 (4)
C140.0272 (7)0.0173 (6)0.0205 (6)−0.0027 (5)0.0088 (5)−0.0008 (5)
C150.0305 (7)0.0135 (6)0.0284 (7)−0.0016 (5)−0.0005 (6)−0.0020 (5)
Geometric parameters (Å, °)
Cl1—C31.7418 (13)C8—C91.4043 (17)
N1—C71.2813 (16)C9—C101.3999 (17)
N1—C81.4187 (15)C9—C141.5045 (18)
C1—C21.3900 (17)C10—C111.4036 (18)
C1—C61.3988 (17)C10—H10A0.9500
C1—H1A0.9500C11—C121.3906 (19)
C2—C31.3908 (18)C11—C151.5125 (18)
C2—H2A0.9500C12—C131.3957 (18)
C3—C41.3906 (17)C12—H12A0.9500
C4—C51.3881 (18)C13—H13A0.9500
C4—H4A0.9500C14—H14A0.9800
C5—C61.4012 (17)C14—H14B0.9800
C5—H5A0.9500C14—H14C0.9800
C6—C71.4702 (17)C15—H15A0.9800
C7—H7A0.9500C15—H15B0.9800
C8—C131.3980 (18)C15—H15C0.9800
C7—N1—C8116.85 (11)C10—C9—C14121.06 (11)
C2—C1—C6121.02 (12)C8—C9—C14120.48 (11)
C2—C1—H1A119.5C9—C10—C11122.03 (12)
C6—C1—H1A119.5C9—C10—H10A119.0
C1—C2—C3118.36 (11)C11—C10—H10A119.0
C1—C2—H2A120.8C12—C11—C10118.34 (12)
C3—C2—H2A120.8C12—C11—C15120.68 (12)
C4—C3—C2122.02 (12)C10—C11—C15120.98 (12)
C4—C3—Cl1118.84 (10)C11—C12—C13120.76 (12)
C2—C3—Cl1119.13 (10)C11—C12—H12A119.6
C5—C4—C3118.88 (12)C13—C12—H12A119.6
C5—C4—H4A120.6C12—C13—C8120.39 (12)
C3—C4—H4A120.6C12—C13—H13A119.8
C4—C5—C6120.52 (11)C8—C13—H13A119.8
C4—C5—H5A119.7C9—C14—H14A109.5
C6—C5—H5A119.7C9—C14—H14B109.5
C1—C6—C5119.20 (11)H14A—C14—H14B109.5
C1—C6—C7119.47 (11)C9—C14—H14C109.5
C5—C6—C7121.33 (11)H14A—C14—H14C109.5
N1—C7—C6123.24 (12)H14B—C14—H14C109.5
N1—C7—H7A118.4C11—C15—H15A109.5
C6—C7—H7A118.4C11—C15—H15B109.5
C13—C8—C9120.00 (11)H15A—C15—H15B109.5
C13—C8—N1120.80 (12)C11—C15—H15C109.5
C9—C8—N1119.14 (11)H15A—C15—H15C109.5
C10—C9—C8118.47 (11)H15B—C15—H15C109.5
C6—C1—C2—C3−0.07 (19)C7—N1—C8—C9−133.76 (13)
C1—C2—C3—C40.46 (19)C13—C8—C9—C10−1.42 (18)
C1—C2—C3—Cl1−179.11 (10)N1—C8—C9—C10−178.57 (11)
C2—C3—C4—C5−0.81 (19)C13—C8—C9—C14178.43 (12)
Cl1—C3—C4—C5178.77 (10)N1—C8—C9—C141.29 (18)
C3—C4—C5—C60.76 (19)C8—C9—C10—C111.54 (18)
C2—C1—C6—C50.04 (19)C14—C9—C10—C11−178.31 (12)
C2—C1—C6—C7−178.99 (12)C9—C10—C11—C12−0.63 (19)
C4—C5—C6—C1−0.39 (19)C9—C10—C11—C15178.60 (11)
C4—C5—C6—C7178.62 (12)C10—C11—C12—C13−0.40 (18)
C8—N1—C7—C6−174.26 (12)C15—C11—C12—C13−179.64 (13)
C1—C6—C7—N1−178.57 (12)C11—C12—C13—C80.50 (19)
C5—C6—C7—N12.4 (2)C9—C8—C13—C120.44 (19)
C7—N1—C8—C1349.12 (17)N1—C8—C13—C12177.53 (12)
Hydrogen-bond geometry (Å, °)
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cg1i0.952.673.3885 (14)132
C14—H14A···Cg1ii0.982.863.4853 (14)124
C2—H2A···Cg2iii0.952.733.4371 (14)132
C4—H4A···Cg2iv0.952.803.5534 (15)134
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, y+1/2, z; (iii) x−1/2, y−1/2, z; (iv) x+1/2, −y+1/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5274).
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cimerman, Z., Miljanic, S. & Galic, N. (2000). Croat. Chem. Acta, 73, 81–95.
  • Cimerman, Z. & Stefanac, Z. (2001). Polyhedron, 4, 1755–1760.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Galic, N., Cimerman, Z. & Tomisic, V. (1997). Anal. Chim. Acta, 343, 135–143.
  • Ittel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169–1203. [PubMed]
  • More, P. G., Bhalvankar, R. B. & Patter, S. C. (2001). J. Indian Chem. Soc. 78, 474–475.
  • Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31. [PubMed]
  • Shah, S., Vyas, R. & Mehta, R. H. (1992). J. Indian Chem. Soc. 69, 590–596.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography