PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Oct 1, 2011; 67(Pt 10): m1389.
Published online Sep 14, 2011. doi:  10.1107/S1600536811036555
PMCID: PMC3201507
catena-Poly[[(triphenyl­phosphane)copper(I)]-di-μ-iodido-[(triphenyl­phosphane)copper(I)]-μ-{1,2-bis­[1-(pyridin-4-yl)ethyl­idene]hydrazine}]
Hoong-Kun Fun,a* Wan-Sin Loh,a§ Goutam K. Patra,b Anindita Mukherjee,b and Pankaj K. Palb
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
bDepartment of Chemistry, Vijoygarh Jyotish Ray College, Jadavpur, Kolkata, 700 032, India
Correspondence e-mail: hkfun/at/usm.my
Thomson Reuters ResearcherID: A-3561-2009.
§Thomson Reuters ResearcherID: C-7581-2009.
Received August 19, 2011; Accepted September 8, 2011.
Abstract
In the title coordination polymer, [Cu2I2(C14H14N4)(C18H15P)2]n, the CuI atom is coordinated by two I atoms, one P atom and one N atom in a fairly regular tetra­hedral arrangement. A crystallographic inversion centre generates a Cu2I2 diamond with a Cu–Cu separation of 3.0120 (5) Å. The complete N,N′-(1-pyridin-4-yl-ethethyl­idene)-hydrazine mol­ecule is also generated by inversion symmetry, and this bridging ligand leads to [011] polymeric chains in the crystal structure.
Related literature
For background to copper(I) iodide and triphenyl­phosphine networks, see: Siedel & Stang (2002 [triangle]); Fujita et al. (2005 [triangle]); Banerjee et al. (2008 [triangle]); Zhou et al. (2006 [triangle]); Yam & Lo (1999 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-67-m1389-scheme1.jpg Object name is e-67-m1389-scheme1.jpg
Crystal data
  • [Cu2I2(C14H14N4)(C18H15P)2]
  • M r = 1143.72
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-m1389-efi1.jpg
  • a = 9.2788 (4) Å
  • b = 11.4322 (5) Å
  • c = 12.4204 (5) Å
  • α = 74.566 (2)°
  • β = 76.690 (2)°
  • γ = 72.067 (2)°
  • V = 1192.41 (9) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 2.29 mm−1
  • T = 100 K
  • 0.36 × 0.23 × 0.15 mm
Data collection
  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.494, T max = 0.724
  • 33229 measured reflections
  • 8881 independent reflections
  • 7865 reflections with I > 2σ(I)
  • R int = 0.041
Refinement
  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.086
  • S = 1.05
  • 8881 reflections
  • 272 parameters
  • H-atom parameters constrained
  • Δρmax = 2.34 e Å−3
  • Δρmin = −1.81 e Å−3
Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).
Table 1
Table 1
Selected geometric parameters (Å, °)
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036555/hb6379sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036555/hb6379Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship.
supplementary crystallographic information
Comment
Copper(I) iodides are interesting building blocks for the formation of extended solid-state coordination architectures (Siedel et al., 2002; Fujita et al., 2005; Banerjee et al., 2008). Copper(I) complexes with PPh3 as a co-ligand are of rising importance owing to their diverse structures and photophysical and chemical properties (Zhou et al., 2006; Yam & Lo, 1999).
The asymmetric unit of the title polymeric compound (Fig. 1) contains one CuI cation, one iodine anion, one triphenylphosphane unit and one N,N'-(1-pyridin-4-yl-ethethylidene)-hydrazine unit. The other half being generated by an inversion center (symmetry code: -x + 2, -y, -z). Each CuI cation is tetracoordinated by one nitrogen, one phosphorus and two iodine atoms. The Cu–I distances are 2.6417 (3) and 2.6781 (3) Å. In the crystal (Fig. 2 & Fig. 3), the nitrogen atoms are bridged together, leading to the formation of polymeric chains along the [011].
Experimental
The N,N'-bis-(1-pyridin-4-yl-ethethylidene)-hydrazine component was prepared in good yield as a yellow solid by condensing hydrazine hydrate with 4-acetylpyridine in anhydrous methanol in 1:2 molar ratio. The Cu(I) complex was prepared in the following way: to a solution of PPh3 (0.262 g, 1 mmol) in CH3CN (50 ml), CuI (0.19 g, 1 mmol) was added. The reaction mixture was stirred for about 1 h to obtain a white turbid solution. Then N,N'-bis-(1-pyridin-4-yl-ethethylidene)-hydrazine (0.238 g, 1 mmol) in 20 ml CHCl3 was added with constant stirring at room temperature to give a clear yellowish solution. Orange–red block-shaped crystals were obtained by slow evaporation of the solution after 2 days. Yield: 0.45 g (70%).
Refinement
All H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.95–0.98 Å].
Figures
Fig. 1.
Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
Fig. 2.
Fig. 2.
The polymeric chain of the title compound with 50% probability ellipsoids for non H atoms, showing the coordination environment for the N atoms.
Fig. 3.
Fig. 3.
The crystal packing of the title compound, viewed along the a axis.
Crystal data
[Cu2I2(C14H14N4)(C18H15P)2]Z = 1
Mr = 1143.72F(000) = 566
Triclinic, P1Dx = 1.593 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2788 (4) ÅCell parameters from 9948 reflections
b = 11.4322 (5) Åθ = 2.3–34.9°
c = 12.4204 (5) ŵ = 2.29 mm1
α = 74.566 (2)°T = 100 K
β = 76.690 (2)°Block, orange
γ = 72.067 (2)°0.36 × 0.23 × 0.15 mm
V = 1192.41 (9) Å3
Data collection
Bruker SMART APEXII CCD diffractometer8881 independent reflections
Radiation source: fine-focus sealed tube7865 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 33.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −14→14
Tmin = 0.494, Tmax = 0.724k = −17→16
33229 measured reflectionsl = −18→19
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0516P)2 + 0.4005P] where P = (Fo2 + 2Fc2)/3
8881 reflections(Δ/σ)max = 0.002
272 parametersΔρmax = 2.34 e Å3
0 restraintsΔρmin = −1.81 e Å3
Special details
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
I10.855859 (12)−0.132037 (10)0.055940 (9)0.01592 (4)
Cu10.86308 (2)0.10732 (2)0.023918 (18)0.01484 (5)
P10.75620 (5)0.16954 (4)0.18626 (4)0.01378 (8)
N10.74367 (17)0.19616 (15)−0.10892 (13)0.0163 (3)
N20.53664 (18)0.47410 (16)−0.45218 (13)0.0191 (3)
C10.7889 (2)0.28666 (19)−0.19227 (16)0.0201 (3)
H1A0.87560.3112−0.18690.024*
C20.7158 (2)0.34564 (19)−0.28518 (16)0.0203 (3)
H2A0.75110.4099−0.34120.024*
C30.5898 (2)0.31012 (17)−0.29597 (15)0.0160 (3)
C40.5405 (2)0.21851 (19)−0.20863 (16)0.0201 (3)
H4A0.45390.1924−0.21150.024*
C50.6193 (2)0.16582 (19)−0.11742 (16)0.0196 (3)
H5A0.58280.1049−0.05780.024*
C60.5135 (2)0.36689 (18)−0.39770 (15)0.0171 (3)
C70.4228 (3)0.2953 (2)−0.42808 (18)0.0248 (4)
H7A0.39720.3349−0.50400.037*
H7B0.32800.2960−0.37320.037*
H7C0.48390.2082−0.42690.037*
C80.79470 (19)0.30849 (17)0.20650 (15)0.0153 (3)
C90.8041 (2)0.32434 (19)0.31231 (16)0.0187 (3)
H9A0.78920.26110.37800.022*
C100.8351 (2)0.4324 (2)0.32155 (18)0.0227 (4)
H10A0.84280.44220.39350.027*
C110.8550 (2)0.52586 (19)0.22673 (19)0.0236 (4)
H11A0.87550.59970.23380.028*
C120.8450 (3)0.5120 (2)0.12104 (18)0.0247 (4)
H12A0.85800.57620.05590.030*
C130.8158 (2)0.40299 (19)0.11159 (17)0.0223 (4)
H13A0.81020.39290.03930.027*
C140.8022 (2)0.05253 (17)0.31409 (15)0.0152 (3)
C150.6953 (2)0.0328 (2)0.41092 (18)0.0290 (5)
H15A0.59140.08080.41250.035*
C160.7404 (3)−0.0575 (3)0.5063 (2)0.0391 (6)
H16A0.6667−0.07130.57210.047*
C170.8924 (3)−0.1270 (2)0.5051 (2)0.0321 (5)
H17A0.9229−0.18840.56990.038*
C180.9990 (3)−0.1063 (2)0.4092 (2)0.0332 (5)
H18A1.1036−0.15230.40870.040*
C190.9544 (2)−0.0186 (2)0.31328 (17)0.0250 (4)
H19A1.0279−0.00700.24680.030*
C200.5469 (2)0.21052 (18)0.20193 (16)0.0173 (3)
C210.4819 (2)0.1214 (2)0.18810 (17)0.0201 (3)
H21A0.54550.04060.17920.024*
C220.3255 (2)0.1495 (2)0.18721 (17)0.0220 (4)
H22A0.28250.08760.17880.026*
C230.2321 (2)0.2676 (2)0.1986 (2)0.0267 (4)
H23A0.12560.28790.19570.032*
C240.2950 (3)0.3556 (2)0.2141 (3)0.0363 (6)
H24A0.23080.43620.22320.044*
C250.4523 (2)0.3274 (2)0.2166 (2)0.0296 (5)
H25A0.49420.38820.22840.036*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
I10.01722 (6)0.01009 (6)0.01945 (6)−0.00324 (4)−0.00483 (4)−0.00023 (4)
Cu10.01887 (10)0.01192 (11)0.01240 (10)−0.00298 (8)−0.00424 (7)−0.00015 (7)
P10.01561 (18)0.0109 (2)0.01386 (19)−0.00234 (14)−0.00335 (14)−0.00154 (15)
N10.0198 (6)0.0119 (7)0.0153 (7)−0.0020 (5)−0.0060 (5)0.0005 (5)
N20.0205 (7)0.0176 (8)0.0159 (7)−0.0021 (6)−0.0077 (5)0.0028 (6)
C10.0239 (8)0.0159 (9)0.0201 (8)−0.0071 (7)−0.0094 (7)0.0042 (6)
C20.0240 (8)0.0167 (9)0.0193 (8)−0.0065 (7)−0.0098 (7)0.0046 (6)
C30.0175 (7)0.0127 (8)0.0154 (7)−0.0002 (6)−0.0054 (6)−0.0008 (6)
C40.0209 (8)0.0187 (9)0.0196 (8)−0.0063 (6)−0.0074 (6)0.0025 (6)
C50.0218 (8)0.0185 (9)0.0161 (8)−0.0064 (6)−0.0062 (6)0.0046 (6)
C60.0185 (7)0.0150 (8)0.0150 (7)0.0000 (6)−0.0052 (6)−0.0014 (6)
C70.0348 (10)0.0171 (9)0.0245 (9)−0.0056 (8)−0.0146 (8)−0.0007 (7)
C80.0148 (7)0.0115 (8)0.0182 (8)−0.0022 (5)−0.0028 (6)−0.0021 (6)
C90.0206 (8)0.0159 (8)0.0197 (8)−0.0047 (6)−0.0033 (6)−0.0039 (6)
C100.0264 (9)0.0198 (9)0.0238 (9)−0.0062 (7)−0.0032 (7)−0.0085 (7)
C110.0234 (8)0.0136 (9)0.0329 (11)−0.0046 (7)0.0000 (7)−0.0074 (7)
C120.0319 (10)0.0144 (9)0.0253 (10)−0.0067 (7)−0.0020 (8)−0.0013 (7)
C130.0293 (9)0.0154 (9)0.0201 (9)−0.0050 (7)−0.0054 (7)−0.0002 (7)
C140.0186 (7)0.0125 (8)0.0141 (7)−0.0040 (6)−0.0038 (6)−0.0011 (6)
C150.0210 (8)0.0424 (14)0.0192 (9)−0.0099 (8)−0.0056 (7)0.0044 (8)
C160.0348 (11)0.0576 (18)0.0215 (10)−0.0234 (12)−0.0088 (9)0.0141 (10)
C170.0445 (12)0.0253 (11)0.0257 (10)−0.0109 (9)−0.0178 (9)0.0083 (8)
C180.0364 (11)0.0292 (12)0.0237 (10)0.0098 (9)−0.0124 (9)−0.0035 (8)
C190.0234 (8)0.0260 (11)0.0171 (8)0.0041 (7)−0.0038 (7)−0.0022 (7)
C200.0173 (7)0.0158 (8)0.0176 (8)−0.0017 (6)−0.0047 (6)−0.0033 (6)
C210.0189 (7)0.0213 (9)0.0210 (9)−0.0047 (6)−0.0026 (6)−0.0072 (7)
C220.0192 (8)0.0273 (10)0.0228 (9)−0.0084 (7)−0.0035 (7)−0.0080 (7)
C230.0179 (8)0.0292 (11)0.0329 (11)−0.0035 (7)−0.0089 (7)−0.0057 (8)
C240.0201 (9)0.0222 (11)0.0659 (18)0.0019 (8)−0.0124 (10)−0.0121 (11)
C250.0197 (8)0.0194 (10)0.0517 (14)−0.0007 (7)−0.0104 (9)−0.0120 (9)
Geometric parameters (Å, °)
Cu1—I1i2.6417 (3)C10—C111.383 (3)
Cu1—I12.6781 (3)C10—H10A0.9500
Cu1—N12.0586 (15)C11—C121.390 (3)
Cu1—P12.2278 (5)C11—H11A0.9500
Cu1—I1i2.6417 (3)C12—C131.393 (3)
Cu1—Cu1i3.0120 (5)C12—H12A0.9500
P1—C81.8214 (19)C13—H13A0.9500
P1—C141.8228 (18)C14—C151.387 (3)
P1—C201.8288 (18)C14—C191.396 (3)
N1—C51.336 (2)C15—C161.398 (3)
N1—C11.348 (2)C15—H15A0.9500
N2—C61.288 (2)C16—C171.389 (4)
N2—N2ii1.405 (3)C16—H16A0.9500
C1—C21.383 (2)C17—C181.380 (4)
C1—H1A0.9500C17—H17A0.9500
C2—C31.394 (3)C18—C191.390 (3)
C2—H2A0.9500C18—H18A0.9500
C3—C41.395 (3)C19—H19A0.9500
C3—C61.487 (2)C20—C251.386 (3)
C4—C51.388 (2)C20—C211.396 (3)
C4—H4A0.9500C21—C221.389 (3)
C5—H5A0.9500C21—H21A0.9500
C6—C71.503 (3)C22—C231.385 (3)
C7—H7A0.9800C22—H22A0.9500
C7—H7B0.9800C23—C241.381 (3)
C7—H7C0.9800C23—H23A0.9500
C8—C131.393 (3)C24—C251.401 (3)
C8—C91.399 (3)C24—H24A0.9500
C9—C101.390 (3)C25—H25A0.9500
C9—H9A0.9500
Cu1i—I1—Cu168.967 (9)C8—C9—H9A119.9
N1—Cu1—P1115.34 (5)C11—C10—C9120.45 (19)
N1—Cu1—I1i104.66 (5)C11—C10—H10A119.8
P1—Cu1—I1i115.133 (15)C9—C10—H10A119.8
N1—Cu1—I1102.74 (5)C10—C11—C12120.15 (19)
P1—Cu1—I1107.279 (15)C10—C11—H11A119.9
I1i—Cu1—I1111.033 (9)C12—C11—H11A119.9
N1—Cu1—Cu1i114.71 (5)C11—C12—C13119.39 (19)
P1—Cu1—Cu1i129.538 (16)C11—C12—H12A120.3
I1i—Cu1—Cu1i56.087 (8)C13—C12—H12A120.3
I1—Cu1—Cu1i54.946 (8)C12—C13—C8121.04 (19)
C8—P1—C14103.50 (8)C12—C13—H13A119.5
C8—P1—C20103.58 (8)C8—C13—H13A119.5
C14—P1—C20104.71 (8)C15—C14—C19119.24 (17)
C8—P1—Cu1117.67 (6)C15—C14—P1123.60 (14)
C14—P1—Cu1115.48 (6)C19—C14—P1117.15 (14)
C20—P1—Cu1110.48 (6)C14—C15—C16120.1 (2)
C5—N1—C1116.93 (15)C14—C15—H15A120.0
C5—N1—Cu1121.74 (12)C16—C15—H15A120.0
C1—N1—Cu1121.32 (12)C17—C16—C15120.3 (2)
C6—N2—N2ii113.4 (2)C17—C16—H16A119.9
N1—C1—C2123.36 (18)C15—C16—H16A119.9
N1—C1—H1A118.3C18—C17—C16119.6 (2)
C2—C1—H1A118.3C18—C17—H17A120.2
C1—C2—C3119.49 (17)C16—C17—H17A120.2
C1—C2—H2A120.3C17—C18—C19120.4 (2)
C3—C2—H2A120.3C17—C18—H18A119.8
C2—C3—C4117.29 (16)C19—C18—H18A119.8
C2—C3—C6120.86 (17)C18—C19—C14120.3 (2)
C4—C3—C6121.85 (17)C18—C19—H19A119.8
C5—C4—C3119.33 (17)C14—C19—H19A119.8
C5—C4—H4A120.3C25—C20—C21118.99 (17)
C3—C4—H4A120.3C25—C20—P1123.81 (16)
N1—C5—C4123.53 (17)C21—C20—P1116.96 (14)
N1—C5—H5A118.2C22—C21—C20120.79 (19)
C4—C5—H5A118.2C22—C21—H21A119.6
N2—C6—C3114.47 (17)C20—C21—H21A119.6
N2—C6—C7126.95 (17)C23—C22—C21120.06 (19)
C3—C6—C7118.56 (17)C23—C22—H22A120.0
C6—C7—H7A109.5C21—C22—H22A120.0
C6—C7—H7B109.5C24—C23—C22119.50 (18)
H7A—C7—H7B109.5C24—C23—H23A120.2
C6—C7—H7C109.5C22—C23—H23A120.2
H7A—C7—H7C109.5C23—C24—C25120.7 (2)
H7B—C7—H7C109.5C23—C24—H24A119.6
C13—C8—C9118.83 (18)C25—C24—H24A119.6
C13—C8—P1118.03 (14)C20—C25—C24119.9 (2)
C9—C8—P1123.14 (14)C20—C25—H25A120.1
C10—C9—C8120.13 (18)C24—C25—H25A120.1
C10—C9—H9A119.9
Cu1i—I1—Cu1—N1111.41 (5)Cu1—P1—C8—C1332.33 (16)
Cu1i—I1—Cu1—P1−126.595 (17)C14—P1—C8—C9−18.90 (17)
Cu1i—I1—Cu1—I1i0.0C20—P1—C8—C990.17 (16)
N1—Cu1—P1—C8−84.49 (8)Cu1—P1—C8—C9−147.61 (13)
I1i—Cu1—P1—C837.63 (6)C13—C8—C9—C10−0.5 (3)
I1—Cu1—P1—C8161.76 (6)P1—C8—C9—C10179.45 (15)
Cu1i—Cu1—P1—C8103.30 (6)C8—C9—C10—C110.9 (3)
N1—Cu1—P1—C14152.70 (8)C9—C10—C11—C12−0.4 (3)
I1i—Cu1—P1—C14−85.18 (7)C10—C11—C12—C13−0.4 (3)
I1—Cu1—P1—C1438.95 (7)C11—C12—C13—C80.8 (3)
Cu1i—Cu1—P1—C14−19.51 (7)C9—C8—C13—C12−0.3 (3)
N1—Cu1—P1—C2034.12 (9)P1—C8—C13—C12179.73 (16)
I1i—Cu1—P1—C20156.24 (7)C8—P1—C14—C1591.61 (19)
I1—Cu1—P1—C20−79.63 (7)C20—P1—C14—C15−16.6 (2)
Cu1i—Cu1—P1—C20−138.08 (7)Cu1—P1—C14—C15−138.34 (17)
P1—Cu1—N1—C5−77.61 (16)C8—P1—C14—C19−87.26 (17)
I1i—Cu1—N1—C5154.82 (14)C20—P1—C14—C19164.52 (16)
I1—Cu1—N1—C538.75 (16)Cu1—P1—C14—C1942.79 (18)
Cu1i—Cu1—N1—C595.78 (15)C19—C14—C15—C16−0.1 (4)
P1—Cu1—N1—C1103.31 (15)P1—C14—C15—C16−178.9 (2)
I1i—Cu1—N1—C1−24.26 (16)C14—C15—C16—C170.7 (4)
I1—Cu1—N1—C1−140.33 (15)C15—C16—C17—C180.1 (4)
Cu1i—Cu1—N1—C1−83.30 (16)C16—C17—C18—C19−1.5 (4)
C5—N1—C1—C2−1.6 (3)C17—C18—C19—C142.1 (4)
Cu1—N1—C1—C2177.55 (16)C15—C14—C19—C18−1.3 (3)
N1—C1—C2—C3−1.0 (3)P1—C14—C19—C18177.6 (2)
C1—C2—C3—C42.3 (3)C8—P1—C20—C254.4 (2)
C1—C2—C3—C6−176.79 (18)C14—P1—C20—C25112.59 (19)
C2—C3—C4—C5−1.2 (3)Cu1—P1—C20—C25−122.45 (18)
C6—C3—C4—C5177.88 (19)C8—P1—C20—C21178.64 (15)
C1—N1—C5—C42.8 (3)C14—P1—C20—C21−73.20 (16)
Cu1—N1—C5—C4−176.36 (16)Cu1—P1—C20—C2151.76 (16)
C3—C4—C5—N1−1.4 (3)C25—C20—C21—C221.0 (3)
N2ii—N2—C6—C3−179.94 (18)P1—C20—C21—C22−173.48 (16)
N2ii—N2—C6—C71.5 (3)C20—C21—C22—C230.9 (3)
C2—C3—C6—N2−21.8 (3)C21—C22—C23—C24−1.9 (3)
C4—C3—C6—N2159.10 (19)C22—C23—C24—C251.0 (4)
C2—C3—C6—C7156.82 (19)C21—C20—C25—C24−1.9 (3)
C4—C3—C6—C7−22.2 (3)P1—C20—C25—C24172.2 (2)
C14—P1—C8—C13161.04 (15)C23—C24—C25—C200.9 (4)
C20—P1—C8—C13−89.89 (16)
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y+1, −z−1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6379).
  • Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M. & Yaghi, O. M. (2008). Science, 319, 939–943. [PubMed]
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  • Fujita, M., Tominaga, M., Hori, A. & Therrin, B. (2005). Acc. Chem. Res. 38, 369–378. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siedel, S. R. & Stang, P. J. (2002). Acc. Chem. Res. 35, 972–983. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yam, V. W.-W. & Lo, K. K.-W. (1999). Chem. Soc. Rev. 28, 323–334.
  • Zhou, X.-H., Wu, T. & Li, D. (2006). Inorg. Chim. Acta, 359, 1442–1448.
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography