PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Oct 1, 2011; 67(Pt 10): o2570.
Published online Sep 14, 2011. doi:  10.1107/S1600536811034726
PMCID: PMC3201347
4-[2-(4-Bromo­phen­yl)hydrazinyl­idene]-3-methyl-5-oxo-4,5-dihydro-1H-pyrazole-1-carbothio­amide
Hoong-Kun Fun,a* Madhukar Hemamalini,a Shobhitha Shetty,b and BalaKrishna Kallurayab
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
Correspondence e-mail: hkfun/at/usm.my
Thomson Reuters ResearcherID: A-3561-2009.
Received August 19, 2011; Accepted August 24, 2011.
Abstract
In the title compound, C11H10BrN5OS, the approximately planar pyrazole ring [maximum deviation = 0.014 (2) Å] forms a dihedral angle of 5.49 (13)° with the benzene ring. An intra­molecular N—H(...)O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked through inter­molecular N—H(...)S and N—H(...)O hydrogen bonds, forming a two-dimensional network parallel to (100). A short Br(...)Br contact of 3.5114 (6) Å is also observed.
Related literature
For details and applications of pyrazole compounds, see: Isloor et al. (2009 [triangle]); Rai et al. (2008 [triangle]) Bradbury & Pucci (2008 [triangle]); Girisha et al. (2010 [triangle]). For standard bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-67-o2570-scheme1.jpg Object name is e-67-o2570-scheme1.jpg
Crystal data
  • C11H10BrN5OS
  • M r = 340.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-o2570-efi1.jpg
  • a = 25.6080 (18) Å
  • b = 11.6686 (8) Å
  • c = 9.0823 (6) Å
  • β = 98.907 (2)°
  • V = 2681.2 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 3.22 mm−1
  • T = 296 K
  • 0.48 × 0.33 × 0.17 mm
Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.306, T max = 0.609
  • 15576 measured reflections
  • 3869 independent reflections
  • 2776 reflections with I > 2σ(I)
  • R int = 0.034
Refinement
  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.127
  • S = 1.03
  • 3869 reflections
  • 185 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.75 e Å−3
Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL and PLATON.
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034726/lh5323sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034726/lh5323Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811034726/lh5323Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
supplementary crystallographic information
Comment
The pyrazole ring is a prominent structural moiety found in numerous pharmaceutically active compounds. This is mainly due to the easy preparation and the important pharmacological activity. Therefore, the synthesis and selective functionalization of pyrazoles have been the focus of active research area over the years (Isloor et al., 2009). Pyrazoles have been reported to possess antibacterial activity (Rai et al., 2008), and inhibitor activity against DNA gyrase and topoisomerase IV at their respective ATP-binding sites (Bradbury & Pucci, 2008). Moreover, pyrazole-containing compounds have received considerable attention owing to their diverse chemotherapeutic potentials including versatile anti-inflammatory and antimicrobial activities (Girisha et al., 2010). The synthetic route followed for obtaining the title compound involves the diazotization of substituted anilines to give the diazonium salts followed by coupling with ethyl acetoacetate in the presence of sodium acetate to give the corresponding oxobutanoate which on further reaction with thiosemicarbazide in acetic acid gave the required thioamides.
The asymmetric unit of the title compound (I) is shown in Fig. 1. The pyrazole (N1,N2/C1–C3) ring is approximately planar, with a maximum deviation of 0.014 (2) Å for atom N1. The dihedral angle between the benzene (C4–C9) ring and the pyrazole (N1,N2/C1–C3) ring is 5.49 (13)°. An intramolecular N4—H1N4···O1 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The bond lengths (Allen et al., 1987) and angles are within normal ranges.
In the crystal structure (Fig. 2) molecules are linked through intermolecular N5—H1N5···S1i and N5—H2N5···O1ii hydrogen bonds (Table 1) forming a two-dimensional network parallel to (1 0 0). A short Br···Br contact of 3.5114 (6) Å is also observed.
Experimental
To a solution of ethyl-2-[(4-bromophenyl)hydrazono]-3-oxobutanoate (0.01 mol) dissolved in glacial acetic acid (20 ml), a solution of thiosemicarbazide (0.02 mol) in glacial acetic acid (25 ml) was added and the mixture was refluxed for 4 h. This was cooled and allowed to stand overnight. The solid product which separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of (I) in a 1:2 mixture of DMF and ethanol.
Refinement
Atoms H1N4, H1N5 and H2N5 were located in difference Fourier maps and refined freely [N–H = 0.81 (4)–0.82 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.
Figures
Fig. 1.
Fig. 1.
The molecular structure of title compound, showing 50% probability displacement ellipsoids. An intramolecular hydrogen bond is shown by a dashed line.
Fig. 2.
Fig. 2.
The crystal packing of (I) with hydrogen bonds shown as dashed lines.
Crystal data
C11H10BrN5OSF(000) = 1360
Mr = 340.21Dx = 1.686 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4204 reflections
a = 25.6080 (18) Åθ = 2.9–27.8°
b = 11.6686 (8) ŵ = 3.22 mm1
c = 9.0823 (6) ÅT = 296 K
β = 98.907 (2)°Slab, orange
V = 2681.2 (3) Å30.48 × 0.33 × 0.17 mm
Z = 8
Data collection
Bruker APEXII DUO CCD area-detector diffractometer3869 independent reflections
Radiation source: fine-focus sealed tube2776 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −36→36
Tmin = 0.306, Tmax = 0.609k = −16→14
15576 measured reflectionsl = −12→12
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0646P)2 + 2.3027P] where P = (Fo2 + 2Fc2)/3
3869 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = −0.75 e Å3
Special details
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
S10.24780 (3)0.67093 (6)0.16175 (6)0.04971 (18)
Br10.476115 (14)1.36166 (3)0.95277 (4)0.07714 (17)
O10.29888 (8)0.85438 (14)0.39141 (19)0.0476 (4)
N10.30362 (8)0.65467 (16)0.43648 (19)0.0377 (4)
N20.32861 (9)0.58425 (17)0.5541 (2)0.0442 (5)
N30.37576 (9)0.85410 (17)0.6771 (2)0.0433 (4)
N40.36660 (9)0.95754 (18)0.6236 (2)0.0432 (4)
N50.26122 (10)0.4932 (2)0.3443 (2)0.0483 (5)
C10.35129 (9)0.7684 (2)0.6042 (2)0.0399 (5)
C20.31496 (9)0.77032 (19)0.4632 (2)0.0358 (4)
C30.35624 (11)0.6506 (2)0.6496 (3)0.0464 (6)
C40.39352 (9)1.0510 (2)0.6975 (2)0.0398 (5)
C50.43053 (11)1.0338 (2)0.8242 (3)0.0536 (6)
H5A0.43880.96000.85880.064*
C60.45488 (11)1.1273 (3)0.8982 (3)0.0581 (7)
H6A0.47941.11690.98400.070*
C70.44277 (10)1.2359 (2)0.8449 (3)0.0500 (6)
C80.40611 (11)1.2539 (2)0.7174 (3)0.0517 (6)
H8A0.39831.32760.68180.062*
C90.38156 (11)1.1601 (2)0.6447 (3)0.0498 (6)
H9A0.35681.17050.55950.060*
C100.27077 (9)0.6012 (2)0.3187 (2)0.0373 (5)
C110.38809 (16)0.6072 (3)0.7892 (4)0.0753 (10)
H11A0.38280.52610.79690.113*
H11B0.37720.64500.87330.113*
H11C0.42480.62240.78750.113*
H1N40.3475 (14)0.980 (3)0.548 (4)0.064 (9)*
H1N50.2727 (15)0.468 (3)0.425 (4)0.077 (11)*
H2N50.2458 (13)0.456 (3)0.275 (4)0.057 (9)*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
S10.0660 (4)0.0450 (4)0.0326 (3)0.0018 (3)−0.0098 (2)0.0007 (2)
Br10.0707 (2)0.0514 (2)0.0982 (3)−0.00776 (14)−0.02193 (18)−0.02813 (16)
O10.0595 (11)0.0342 (9)0.0437 (9)0.0036 (7)−0.0085 (8)0.0020 (6)
N10.0453 (10)0.0322 (10)0.0316 (8)−0.0025 (7)−0.0064 (7)0.0006 (6)
N20.0550 (12)0.0331 (10)0.0387 (9)−0.0027 (9)−0.0111 (8)0.0047 (7)
N30.0467 (11)0.0381 (11)0.0420 (10)−0.0061 (8)−0.0032 (8)−0.0022 (7)
N40.0470 (11)0.0362 (11)0.0422 (10)−0.0034 (8)−0.0064 (8)−0.0040 (8)
N50.0642 (14)0.0411 (12)0.0341 (9)−0.0113 (10)−0.0092 (9)−0.0014 (8)
C10.0442 (12)0.0366 (12)0.0350 (9)−0.0020 (9)−0.0055 (8)−0.0002 (8)
C20.0408 (11)0.0326 (11)0.0327 (9)0.0001 (9)0.0018 (8)−0.0002 (8)
C30.0529 (14)0.0399 (13)0.0406 (11)−0.0057 (10)−0.0112 (10)0.0037 (9)
C40.0388 (11)0.0379 (12)0.0411 (10)−0.0039 (9)0.0012 (9)−0.0064 (9)
C50.0528 (15)0.0406 (14)0.0599 (14)0.0007 (11)−0.0151 (11)−0.0046 (11)
C60.0519 (15)0.0527 (17)0.0606 (15)0.0019 (12)−0.0203 (12)−0.0123 (12)
C70.0441 (13)0.0413 (14)0.0609 (14)−0.0045 (10)−0.0036 (10)−0.0158 (11)
C80.0554 (15)0.0351 (13)0.0600 (14)−0.0030 (11)−0.0053 (11)−0.0044 (10)
C90.0531 (15)0.0413 (14)0.0492 (12)−0.0033 (11)−0.0104 (10)−0.0018 (10)
C100.0412 (11)0.0388 (12)0.0301 (9)−0.0009 (9)−0.0006 (8)−0.0038 (8)
C110.095 (2)0.0536 (17)0.0604 (17)−0.0116 (17)−0.0407 (16)0.0130 (13)
Geometric parameters (Å, °)
S1—C101.667 (2)C1—C21.462 (3)
Br1—C71.893 (2)C3—C111.486 (3)
O1—C21.214 (3)C4—C91.377 (4)
N1—C21.394 (3)C4—C51.387 (3)
N1—C101.401 (3)C5—C61.378 (4)
N1—N21.420 (3)C5—H5A0.9300
N2—C31.289 (3)C6—C71.375 (4)
N3—C11.304 (3)C6—H6A0.9300
N3—N41.308 (3)C7—C81.389 (4)
N4—C41.404 (3)C8—C91.379 (4)
N4—H1N40.82 (3)C8—H8A0.9300
N5—C101.311 (3)C9—H9A0.9300
N5—H1N50.81 (4)C11—H11A0.9600
N5—H2N50.81 (4)C11—H11B0.9600
C1—C31.435 (3)C11—H11C0.9600
C2—N1—C10130.42 (19)C6—C5—H5A120.3
C2—N1—N2111.85 (17)C4—C5—H5A120.3
C10—N1—N2117.67 (18)C7—C6—C5119.8 (2)
C3—N2—N1107.16 (19)C7—C6—H6A120.1
C1—N3—N4118.3 (2)C5—C6—H6A120.1
N3—N4—C4119.5 (2)C6—C7—C8121.3 (2)
N3—N4—H1N4131 (2)C6—C7—Br1118.24 (19)
C4—N4—H1N4110 (2)C8—C7—Br1120.5 (2)
C10—N5—H1N5117 (3)C9—C8—C7118.6 (3)
C10—N5—H2N5117 (2)C9—C8—H8A120.7
H1N5—N5—H2N5125 (4)C7—C8—H8A120.7
N3—C1—C3125.1 (2)C4—C9—C8120.4 (2)
N3—C1—C2128.6 (2)C4—C9—H9A119.8
C3—C1—C2106.37 (19)C8—C9—H9A119.8
O1—C2—N1130.2 (2)N5—C10—N1113.5 (2)
O1—C2—C1126.8 (2)N5—C10—S1124.77 (17)
N1—C2—C1103.00 (18)N1—C10—S1121.74 (17)
N2—C3—C1111.6 (2)C3—C11—H11A109.5
N2—C3—C11122.7 (2)C3—C11—H11B109.5
C1—C3—C11125.7 (2)H11A—C11—H11B109.5
C9—C4—C5120.5 (2)C3—C11—H11C109.5
C9—C4—N4119.0 (2)H11A—C11—H11C109.5
C5—C4—N4120.4 (2)H11B—C11—H11C109.5
C6—C5—C4119.3 (3)
C2—N1—N2—C3−2.1 (3)C2—C1—C3—C11−178.2 (3)
C10—N1—N2—C3−179.5 (2)N3—N4—C4—C9−176.6 (2)
C1—N3—N4—C4−178.2 (2)N3—N4—C4—C51.5 (4)
N4—N3—C1—C3−178.7 (2)C9—C4—C5—C60.8 (4)
N4—N3—C1—C22.4 (4)N4—C4—C5—C6−177.4 (3)
C10—N1—C2—O10.6 (4)C4—C5—C6—C7−0.8 (5)
N2—N1—C2—O1−176.3 (2)C5—C6—C7—C80.3 (5)
C10—N1—C2—C1179.5 (2)C5—C6—C7—Br1178.7 (2)
N2—N1—C2—C12.6 (2)C6—C7—C8—C90.3 (4)
N3—C1—C2—O1−4.0 (4)Br1—C7—C8—C9−178.1 (2)
C3—C1—C2—O1176.9 (2)C5—C4—C9—C8−0.2 (4)
N3—C1—C2—N1177.0 (3)N4—C4—C9—C8178.0 (2)
C3—C1—C2—N1−2.0 (3)C7—C8—C9—C4−0.4 (4)
N1—N2—C3—C10.7 (3)C2—N1—C10—N5−167.1 (2)
N1—N2—C3—C11179.8 (3)N2—N1—C10—N59.7 (3)
N3—C1—C3—N2−178.2 (3)C2—N1—C10—S113.9 (4)
C2—C1—C3—N20.9 (3)N2—N1—C10—S1−169.28 (17)
N3—C1—C3—C112.6 (5)
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
N4—H1N4···O10.82 (4)2.27 (4)2.788 (3)121 (3)
N5—H1N5···S1i0.80 (4)2.84 (4)3.522 (2)144 (3)
N5—H2N5···O1ii0.82 (3)2.11 (4)2.925 (3)175 (4)
Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1/2, y−1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5323).
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Bradbury, B. J. & Pucci, M. J. (2008). Curr. Opin. Pharmacol., 8, 574–581. [PubMed]
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Girisha, K.S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem 45, 4640–4644. [PubMed]
  • Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem 44, 3784–3787. [PubMed]
  • Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem 43, 1715–1720. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography