PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of narLink to Publisher's site
 
Nucleic Acids Res. 1984 September 11; 12(17): 6685–6700.
PMCID: PMC320109

Structural comparison of yeast ribosomal protein genes.

Abstract

The primary structure of the genes encoding the yeast ribosomal proteins L17a and L25 was determined, as well as the positions of the 5'- and 3'-termini of the corresponding mRNAs. Comparison of the gene sequences to those obtained for various other yeast ribosomal protein genes revealed several similarities. In all split genes the intron is located near the 5'-side of the amino acid coding region. Among the introns a clear pattern of sequence conservation can be observed. In particular the intron-exon boundaries and a region close to the 3'-splice site show sequence homology. Conserved sequences were also found in the leader and trailer regions of the ribosomal protein mRNAs. The 5'-flanking regions of the yeast ribosomal protein genes appeared to contain sequence elements that many but not all ribosomal protein genes have in common, and therefore may be implicated in the coordinate expression of these genes. The amino acid coding sequences of the ribosomal protein genes show a biased codon usage. Like most yeast ribosomal protein molecules, L17a and L25 are particularly basic at their N-terminus.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.6M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Woolford JL, Jr, Hereford LM, Rosbash M. Isolation of cloned DNA sequences containing ribosomal protein genes from Saccharomyces cerevisiae. Cell. 1979 Dec;18(4):1247–1259. [PubMed]
  • Fried HM, Pearson NJ, Kim CH, Warner JR. The genes for fifteen ribosomal proteins of Saccharomyces cerevisiae. J Biol Chem. 1981 Oct 10;256(19):10176–10183. [PubMed]
  • Bollen GH, Cohen LH, Mager WH, Klaassen AW, Planta RJ. Isolation of cloned ribosomal protein genes from the yeast Saccharomyces carlsbergensis. Gene. 1981 Sep;14(4):279–287. [PubMed]
  • Fried HM, Warner JR. Molecular cloning and analysis of yeast gene for cycloheximide resistance and ribosomal protein L29. Nucleic Acids Res. 1982 May 25;10(10):3133–3148. [PMC free article] [PubMed]
  • Schultz LD, Friesen JD. Nucleotide sequence of the tcml gene (ribosomal protein L3) of Saccharomyces cerevisiae. J Bacteriol. 1983 Jul;155(1):8–14. [PMC free article] [PubMed]
  • Larkin JC, Woolford JL., Jr Molecular cloning and analysis of the CRY1 gene: a yeast ribosomal protein gene. Nucleic Acids Res. 1983 Jan 25;11(2):403–420. [PMC free article] [PubMed]
  • Bollen GH, Molenaar CM, Cohen LH, van Raamsdonk-Duin MM, Mager WH, Planta RJ. Ribosomal protein genes of yeast contain intervening sequences. Gene. 1982 Apr;18(1):29–37. [PubMed]
  • Woolford JL, Jr, Rosbash M. Ribosomal protein genes rp 39(10 - 78), rp 39(11 - 40), rp 51, and rp 52 are not contiguous to other ribosomal protein genes in the Saccharomyces cerevisiae genome. Nucleic Acids Res. 1981 Oct 10;9(19):5021–5036. [PMC free article] [PubMed]
  • Rosbash M, Harris PK, Woolford JL, Jr, Teem JL. The effect of temperature-sensitive RNA mutants on the transcription products from cloned ribosomal protein genes of yeast. Cell. 1981 Jun;24(3):679–686. [PubMed]
  • Leer RJ, van Raamsdonk-Duin MM, Schoppink PJ, Cornelissen MT, Cohen LH, Mager WH, Planta RJ. Yeast ribosomal protein S33 is encoded by an unsplit gene. Nucleic Acids Res. 1983 Nov 25;11(22):7759–7768. [PMC free article] [PubMed]
  • Ng R, Abelson J. Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3912–3916. [PubMed]
  • Gallwitz D, Sures I. Structure of a split yeast gene: complete nucleotide sequence of the actin gene in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1980 May;77(5):2546–2550. [PubMed]
  • Miller AM. The yeast MATa1 gene contains two introns. EMBO J. 1984 May;3(5):1061–1065. [PubMed]
  • Gorenstein C, Warner JR. Coordinate regulation of the synthesis of eukaryotic ribosomal proteins. Proc Natl Acad Sci U S A. 1976 May;73(5):1547–1551. [PubMed]
  • Warner JR, Gorenstein C. The synthesis of eucaryotic ribosomal proteins in vitro. Cell. 1977 May;11(1):201–212. [PubMed]
  • Kim CH, Warner JR. Mild temperature shock alters the transcription of a discrete class of Saccharomyces cerevisiae genes. Mol Cell Biol. 1983 Mar;3(3):457–465. [PMC free article] [PubMed]
  • Pearson NJ, Fried HM, Warner JR. Yeast use translational control to compensate for extra copies of a ribosomal protein gene. Cell. 1982 Jun;29(2):347–355. [PubMed]
  • Smith HO, Birnstiel ML. A simple method for DNA restriction site mapping. Nucleic Acids Res. 1976 Sep;3(9):2387–2398. [PMC free article] [PubMed]
  • Sanger F, Coulson AR, Barrell BG, Smith AJ, Roe BA. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. [PubMed]
  • Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. [PubMed]
  • Itoh T, Higo K, Otaka E. Isolation and characterization of twenty-three ribosomal proteins from large subunits of yeast. Biochemistry. 1979 Dec 25;18(26):5787–5791. [PubMed]
  • Bollen GH, Mager WH, Planta RJ. High resolution mini-two-dimensional gel electrophoresis of yeast ribosomal proteins. A standard nomenclature for yeast ribosomal proteins. Mol Biol Rep. 1981 Nov 30;8(1):37–44. [PubMed]
  • Bennetzen JL, Hall BD. Codon selection in yeast. J Biol Chem. 1982 Mar 25;257(6):3026–3031. [PubMed]
  • Leer RJ, van Raamsdonk-Duin MM, Molenaar CM, Cohen LH, Mager WH, Planta RJ. The structure of the gene coding for the phosphorylated ribosomal protein S10 in yeast. Nucleic Acids Res. 1982 Oct 11;10(19):5869–5878. [PMC free article] [PubMed]
  • Teem JL, Rosbash M. Expression of a beta-galactosidase gene containing the ribosomal protein 51 intron is sensitive to the rna2 mutation of yeast. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4403–4407. [PubMed]
  • Käufer NF, Fried HM, Schwindinger WF, Jasin M, Warner JR. Cycloheximide resistance in yeast: the gene and its protein. Nucleic Acids Res. 1983 May 25;11(10):3123–3135. [PMC free article] [PubMed]
  • Pikielny CW, Teem JL, Rosbash M. Evidence for the biochemical role of an internal sequence in yeast nuclear mRNA introns: implications for U1 RNA and metazoan mRNA splicing. Cell. 1983 Sep;34(2):395–403. [PubMed]
  • Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. [PubMed]
  • Mount SM. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. [PMC free article] [PubMed]
  • Langford CJ, Gallwitz D. Evidence for an intron-contained sequence required for the splicing of yeast RNA polymerase II transcripts. Cell. 1983 Jun;33(2):519–527. [PubMed]
  • Langford CJ, Klinz FJ, Donath C, Gallwitz D. Point mutations identify the conserved, intron-contained TACTAAC box as an essential splicing signal sequence in yeast. Cell. 1984 Mar;36(3):645–653. [PubMed]
  • Thill GP, Kramer RA, Turner KJ, Bostian KA. Comparative analysis of the 5'-end regions of two repressible acid phosphatase genes in Saccharomyces cerevisiae. Mol Cell Biol. 1983 Apr;3(4):570–579. [PMC free article] [PubMed]
  • Olins PO, Nomura M. Translational regulation by ribosomal protein S8 in Escherichia coli: structural homology between rRNA binding site and feedback target on mRNA. Nucleic Acids Res. 1981 Apr 10;9(7):1757–1764. [PMC free article] [PubMed]
  • Burke RL, Tekamp-Olson P, Najarian R. The isolation, characterization, and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae. J Biol Chem. 1983 Feb 25;258(4):2193–2201. [PubMed]
  • Kozak M. Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res. 1981 Oct 24;9(20):5233–5252. [PMC free article] [PubMed]
  • Zaret KS, Sherman F. DNA sequence required for efficient transcription termination in yeast. Cell. 1982 Mar;28(3):563–573. [PubMed]
  • Fitzgerald M, Shenk T. The sequence 5'-AAUAAA-3'forms parts of the recognition site for polyadenylation of late SV40 mRNAs. Cell. 1981 Apr;24(1):251–260. [PubMed]
  • Benoist C, Chambon P. In vivo sequence requirements of the SV40 early promotor region. Nature. 1981 Mar 26;290(5804):304–310. [PubMed]
  • Dobson MJ, Tuite MF, Roberts NA, Kingsman AJ, Kingsman SM, Perkins RE, Conroy SC, Fothergill LA. Conservation of high efficiency promoter sequences in Saccharomyces cerevisiae. Nucleic Acids Res. 1982 Apr 24;10(8):2625–2637. [PMC free article] [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press