PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Sep 1, 2011; 67(Pt 9): o2400.
Published online Aug 27, 2011. doi:  10.1107/S1600536811033976
PMCID: PMC3200960
4-(2-Azaniumyl­eth­yl)piperazin-1-ium bis(perchlorate)
Mohammad Reza Reisi,a Muhammad Saleh Salga,b Hamid Khaledi,b* and Hapipah Mohd Alib
aChemistry Department, Isfahan University, 81646-73441 Isfahan, Iran
bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: khaledi/at/siswa.um.edu.my
Received August 12, 2011; Accepted August 19, 2011.
Abstract
In the title compound, C6H17N3 2+·2ClO4 , the piperazine ring adopts a chair conformation with the ethyl­ammonium fragment occupying an equatorial position. In the crystal, the dications and perchlorate anions are linked through N—H(...)O hydrogen bonding and weak C—H(...)O hydrogen bonding into a three-dimensional supra­molecular network.
Related literature
For the structures of related salts of the 4-(2-ammonio­ethyl)piperazin-1-ium cation, see: Guerfel et al. (1999 [triangle]); Srinivasan et al. (2008 [triangle], 2009 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-67-o2400-scheme1.jpg Object name is e-67-o2400-scheme1.jpg
Crystal data
  • C6H17N3 2+·2ClO4
  • M r = 330.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-o2400-efi1.jpg
  • a = 7.5218 (1) Å
  • b = 11.4371 (2) Å
  • c = 15.2239 (2) Å
  • β = 97.437 (1)°
  • V = 1298.66 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.54 mm−1
  • T = 100 K
  • 0.28 × 0.17 × 0.06 mm
Data collection
  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.863, T max = 0.968
  • 8644 measured reflections
  • 2969 independent reflections
  • 2671 reflections with I > 2σ(I)
  • R int = 0.023
Refinement
  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.080
  • S = 1.05
  • 2969 reflections
  • 187 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.59 e Å−3
Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033976/xu5296sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033976/xu5296Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811033976/xu5296Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the University of Malaya for funding this study (PPP grant No. PS359/2009C).
supplementary crystallographic information
Comment
The crystals of the title compound were obtained unexpectedly during an attempt to prepare a tin(IV) complex of 1-(2-aminoethyl)piperazine in the presence of sodium perchlorate. The organic molecule is doubly protonated at its primary and secondary N atoms, while the tertiary N atom, N2, remains unprotonated. Similar to the structures of some other 1-(2-ammoniumethyl)piperazinium salts (Guerfel et al., 1999; Srinivasan et al., 2008, 2009), the piperazine ring adopts a chair conformation with the ethylammonium group occupying an equatorial position. In the crystal, the dicationic organic moieties and perchlorate anions are linked through N—H···O and C—H···O interactions (Table 1) into a three-dimensional supra-molecular network.
Experimental
A mixture of 4-(2-aminoethyl)piperazine (0.26 g, 2 mmol) and Bu2SnCl2 (0.6 g, 2 mmol) in methanol (50 ml) was refluxed for 2 h. NaClO4 (0.56 g, 4 mmol) was then added and the precipitated sodium chloride was filtered off. The filtrate was evaporated and the obtained solid was recrystallized from ethanol at room temperature to give the colorless crystals of the title compound.
Refinement
The C-bound H atoms were placed at calculated positions and were treated as riding on their parent C atoms with C—H = 0.99 Å. The N-bound H atoms were located in a difference Fourier map, and refined with distance restraints of N—H = 0.91 (2) Å. For all H atoms, Uiso(H) was set to 1.2Ueq(carrier atom).
Figures
Fig. 1.
Fig. 1.
Molecular structure of the title compound with thermal ellipsoids at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
Crystal data
C6H17N32+·2ClO4F(000) = 688
Mr = 330.13Dx = 1.688 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4052 reflections
a = 7.5218 (1) Åθ = 2.2–30.5°
b = 11.4371 (2) ŵ = 0.54 mm1
c = 15.2239 (2) ÅT = 100 K
β = 97.437 (1)°Blade, colourless
V = 1298.66 (3) Å30.28 × 0.17 × 0.06 mm
Z = 4
Data collection
Bruker APEXII CCD diffractometer2969 independent reflections
Radiation source: fine-focus sealed tube2671 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.863, Tmax = 0.968k = −14→12
8644 measured reflectionsl = −19→18
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0388P)2 + 0.8608P] where P = (Fo2 + 2Fc2)/3
2969 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.27 e Å3
5 restraintsΔρmin = −0.59 e Å3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
N10.3280 (2)0.44351 (13)0.34193 (10)0.0188 (3)
H1C0.390 (3)0.5105 (15)0.3389 (14)0.023*
H1D0.268 (3)0.4345 (19)0.2884 (11)0.023*
N20.22434 (17)0.25008 (12)0.44167 (9)0.0137 (3)
N30.26916 (19)0.16033 (12)0.61553 (9)0.0138 (3)
H3C0.308 (3)0.2308 (14)0.6010 (13)0.017*
H3D0.161 (2)0.1729 (17)0.6323 (13)0.017*
H3E0.340 (2)0.1314 (17)0.6606 (11)0.017*
C10.4538 (2)0.34346 (15)0.36621 (12)0.0212 (4)
H1A0.52950.36040.42290.025*
H1B0.53340.33270.31990.025*
C20.3466 (2)0.23325 (15)0.37506 (11)0.0182 (3)
H2A0.27690.21370.31730.022*
H2B0.42890.16740.39280.022*
C30.1959 (2)0.45727 (15)0.40696 (12)0.0186 (3)
H3A0.10990.52050.38730.022*
H3B0.25950.47870.46580.022*
C40.0963 (2)0.34326 (15)0.41350 (12)0.0190 (3)
H4A0.00950.35130.45680.023*
H4B0.02890.32350.35520.023*
C50.1375 (2)0.13996 (15)0.46127 (11)0.0165 (3)
H5A0.12570.08860.40850.020*
H5B0.01600.15590.47680.020*
C60.2498 (2)0.08004 (14)0.53790 (11)0.0158 (3)
H6A0.19110.00650.55290.019*
H6B0.36940.06060.52140.019*
Cl10.72577 (5)0.21252 (3)0.61138 (3)0.01391 (10)
O10.90644 (15)0.24485 (11)0.64617 (9)0.0220 (3)
O20.71413 (18)0.18723 (12)0.51861 (8)0.0263 (3)
O30.67246 (17)0.10996 (11)0.65736 (9)0.0241 (3)
O40.60538 (16)0.30697 (11)0.62494 (10)0.0246 (3)
Cl20.74537 (5)0.57603 (3)0.26377 (2)0.01355 (10)
O50.59033 (15)0.51100 (11)0.22387 (8)0.0188 (3)
O60.75093 (17)0.57359 (11)0.35894 (8)0.0200 (3)
O70.73342 (17)0.69479 (10)0.23263 (8)0.0204 (3)
O80.90557 (15)0.52178 (11)0.23899 (8)0.0202 (3)
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
N10.0269 (8)0.0140 (7)0.0159 (7)−0.0024 (6)0.0044 (6)0.0008 (6)
N20.0141 (6)0.0131 (7)0.0144 (7)−0.0002 (5)0.0034 (5)0.0015 (5)
N30.0150 (6)0.0119 (7)0.0147 (7)−0.0003 (5)0.0026 (5)0.0003 (5)
C10.0235 (9)0.0174 (9)0.0246 (9)0.0005 (7)0.0107 (7)0.0029 (7)
C20.0227 (8)0.0158 (8)0.0178 (8)−0.0002 (6)0.0090 (6)0.0002 (6)
C30.0193 (8)0.0171 (8)0.0195 (8)0.0022 (6)0.0030 (6)0.0004 (7)
C40.0151 (8)0.0187 (9)0.0227 (9)0.0016 (6)0.0009 (6)0.0016 (7)
C50.0175 (8)0.0162 (8)0.0158 (8)−0.0044 (6)0.0027 (6)−0.0009 (6)
C60.0190 (8)0.0125 (8)0.0164 (8)−0.0014 (6)0.0046 (6)−0.0026 (6)
Cl10.01169 (18)0.01297 (19)0.0174 (2)−0.00018 (13)0.00309 (13)−0.00125 (14)
O10.0125 (6)0.0229 (7)0.0300 (7)−0.0028 (5)0.0010 (5)−0.0039 (5)
O20.0263 (7)0.0354 (8)0.0176 (7)−0.0007 (6)0.0045 (5)−0.0055 (6)
O30.0219 (6)0.0207 (7)0.0290 (7)−0.0045 (5)0.0012 (5)0.0090 (5)
O40.0155 (6)0.0157 (6)0.0437 (8)0.0021 (5)0.0076 (5)−0.0067 (6)
Cl20.01502 (19)0.01298 (19)0.01291 (19)0.00041 (13)0.00284 (13)−0.00077 (13)
O50.0160 (6)0.0196 (6)0.0206 (6)−0.0037 (5)0.0016 (5)−0.0013 (5)
O60.0283 (7)0.0194 (6)0.0128 (6)0.0033 (5)0.0045 (5)−0.0001 (5)
O70.0274 (7)0.0134 (6)0.0207 (6)−0.0012 (5)0.0038 (5)0.0031 (5)
O80.0164 (6)0.0227 (7)0.0223 (7)0.0022 (5)0.0056 (5)−0.0069 (5)
Geometric parameters (Å, °)
N1—C31.499 (2)C3—H3A0.9900
N1—C11.500 (2)C3—H3B0.9900
N1—H1C0.902 (15)C4—H4A0.9900
N1—H1D0.884 (15)C4—H4B0.9900
N2—C41.463 (2)C5—C61.513 (2)
N2—C51.467 (2)C5—H5A0.9900
N2—C21.467 (2)C5—H5B0.9900
N3—C61.489 (2)C6—H6A0.9900
N3—H3C0.894 (15)C6—H6B0.9900
N3—H3D0.894 (15)Cl1—O21.4331 (13)
N3—H3E0.878 (15)Cl1—O11.4414 (12)
C1—C21.512 (2)Cl1—O41.4416 (12)
C1—H1A0.9900Cl1—O31.4489 (13)
C1—H1B0.9900Cl2—O71.4376 (12)
C2—H2A0.9900Cl2—O61.4444 (12)
C2—H2B0.9900Cl2—O81.4481 (12)
C3—C41.513 (2)Cl2—O51.4487 (12)
C3—N1—C1111.60 (13)H3A—C3—H3B108.3
C3—N1—H1C109.7 (13)N2—C4—C3109.53 (13)
C1—N1—H1C110.3 (13)N2—C4—H4A109.8
C3—N1—H1D108.6 (14)C3—C4—H4A109.8
C1—N1—H1D111.6 (14)N2—C4—H4B109.8
H1C—N1—H1D104.8 (19)C3—C4—H4B109.8
C4—N2—C5113.04 (13)H4A—C4—H4B108.2
C4—N2—C2109.92 (13)N2—C5—C6109.07 (13)
C5—N2—C2111.30 (13)N2—C5—H5A109.9
C6—N3—H3C111.2 (13)C6—C5—H5A109.9
C6—N3—H3D109.1 (13)N2—C5—H5B109.9
H3C—N3—H3D105.1 (18)C6—C5—H5B109.9
C6—N3—H3E112.0 (13)H5A—C5—H5B108.3
H3C—N3—H3E110.4 (18)N3—C6—C5108.67 (13)
H3D—N3—H3E108.8 (18)N3—C6—H6A110.0
N1—C1—C2109.35 (14)C5—C6—H6A110.0
N1—C1—H1A109.8N3—C6—H6B110.0
C2—C1—H1A109.8C5—C6—H6B110.0
N1—C1—H1B109.8H6A—C6—H6B108.3
C2—C1—H1B109.8O2—Cl1—O1110.39 (8)
H1A—C1—H1B108.3O2—Cl1—O4109.44 (8)
N2—C2—C1109.97 (14)O1—Cl1—O4109.57 (8)
N2—C2—H2A109.7O2—Cl1—O3109.10 (8)
C1—C2—H2A109.7O1—Cl1—O3109.69 (8)
N2—C2—H2B109.7O4—Cl1—O3108.62 (8)
C1—C2—H2B109.7O7—Cl2—O6109.97 (7)
H2A—C2—H2B108.2O7—Cl2—O8109.73 (8)
N1—C3—C4109.21 (14)O6—Cl2—O8109.63 (7)
N1—C3—H3A109.8O7—Cl2—O5109.52 (7)
C4—C3—H3A109.8O6—Cl2—O5109.14 (7)
N1—C3—H3B109.8O8—Cl2—O5108.82 (7)
C4—C3—H3B109.8
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
N1—H1C···O4i0.90 (2)2.16 (2)2.9298 (19)143.(2)
N1—H1D···O3ii0.88 (2)2.09 (2)2.964 (2)168.(2)
N3—H3C···O6i0.89 (2)2.38 (2)3.0741 (19)135.(2)
N3—H3C···O40.89 (2)2.39 (2)3.0225 (19)128.(2)
N3—H3D···O1iii0.89 (2)2.12 (2)2.9875 (18)163.(2)
N3—H3E···O8iv0.88 (2)2.14 (2)2.9025 (19)145.(2)
N3—H3E···O30.88 (2)2.52 (2)3.0724 (19)122.(2)
C1—H1B···O7v0.992.563.407 (2)143.
C3—H3A···O8iii0.992.563.226 (2)124.
C5—H5A···O5vi0.992.583.436 (2)145.
C5—H5B···O2iii0.992.463.452 (2)178.
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, −y+1/2, z−1/2; (iii) x−1, y, z; (iv) x−1/2, −y+1/2, z+1/2; (v) −x+3/2, y−1/2, −z+1/2; (vi) −x+1/2, y−1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5296).
  • Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Guerfel, T., Bdiri, M. & Jouini, A. (1999). J. Chem. Crystallogr. 29, 1205–1210.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Srinivasan, B. R., Dhuri, S. N., Naik, A. R., Näther, C. & Bensch, W. (2008). Polyhedron, 27, 25–34.
  • Srinivasan, B. R., Naik, A. R., Dhuri, S. N., Näther, C. & Bensch, W. (2009). Polyhedron, 28, 3715–3722.
  • Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography