PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2011 September 1; 67(Pt 9): m1266.
Published online 2011 August 17. doi:  10.1107/S160053681103251X
PMCID: PMC3200928

Dibromido(4,7-diazadecane-1,10-di­amine)­copper(II)

Abstract

In the title compound, [CuBr2(C8H22N4)], the CuII atom is six-coordinate forming a distorted octa­hedral complex and is bonded to two axial bromide anions and four equatorial nitro­gen donors. The equatorial Cu—N bond distances range from 2.005 (8) to 2.046 (8) Å while the axial Cu—Br distances are 2.8616 (17) and 2.9402 (17) Å, thus the six-coordinate Cu complex shows the usual Jahn–Teller distortion. All amine hydrogen atoms participate in either inter- or intra­molecular hydrogen bonding to the Br anions.

Related literature

For related structues, see: Lee et al. (1986 [triangle]). For other related literature, see: Jahn & Teller (1937 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-67-m1266-scheme1.jpg

Experimental

Crystal data

  • [CuBr2(C8H22N4)]
  • M r = 397.66
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-67-m1266-efi1.jpg
  • a = 6.9666 (4) Å
  • b = 8.4146 (6) Å
  • c = 24.0261 (15) Å
  • V = 1408.45 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.20 mm−1
  • T = 110 K
  • 0.47 × 0.31 × 0.22 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby detector
  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2007 [triangle]) T min = 0.157, T max = 0.282
  • 9561 measured reflections
  • 2758 independent reflections
  • 2262 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071
  • wR(F 2) = 0.183
  • S = 1.07
  • 2758 reflections
  • 136 parameters
  • 24 restraints
  • H-atom parameters constrained
  • Δρmax = 2.51 e Å−3
  • Δρmin = −1.98 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103251X/pv2444sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103251X/pv2444Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB wishes to acknowledge the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

supplementary crystallographic information

Comment

In this study, the title compound was prepared and its structure determined by X-ray analysis. Owing to the Jahn-Teller distortion (Jahn & Teller, 1937), the Cu(II) center adopts an axially distorted octahedral CuN4Br2 conformation with the axial positions are occupied by the bromide anions. The equatorial positions are occupied by the N4 set of donor nitrogen atoms and the Cu1 lies in the N4 plane; maximum deviation of any atom from the mean-plane formed by CuN4 fragment being 0.042 (4) for N3. The structure of a related compound containing the same linear tetramine, has been reported (Lee et al. 1986) and its structural features compared with those of other linear Cu(II) aliphatic tetraamines of the type H2N(CH2)lNH-(CH2)mNH(CH2)nNH2 where l, m and n are 2 or 3. From this it can be seen that in the title complex, the equatorial Cu—N bond distances range from 2.005 (8) to 2.046 (8) Å and are in the normal range for such bonds. However, the axial Cu—Br distances are elongated at 2.8616 (17) and 2.9402 (17) Å, thus the 6-coordinate Cu complex shows the usual Jahn-Teller distortion. All amine H's participate in either inter or intramolecular hydrogen bonding to the Br anions.

Experimental

The title compound was obtained as a byproduct of an attempt to prepare copper complexes of ethylenediamine N,N-bis(propylsalicylaldimine). A solution of N, N-bis(3-aminopropylethylene)diamine (5 g, 30.52 mmol) in methanol (20 ml) was added dropwise to a solution of salicylaldehyde (7.45 g, 61.04 mmol) in methanol (20 ml). The mixture was refluxed overnight while stirring with magnetic stirrer. Then the reaction mixture was evaporated under reduced pressure. An oily orange product was obtained which later solidified into a yellow compound, [2-(3-amino-propylamino)-ethyl]-propane-1,3-diamine-bis(salicyladimine), used as a ligand (H2L4) in the subsequent reaction. The synthesis of the title complex was achieved by the reaction of CuBr (1.5 g, 10.5 mmol) in methanol (20 ml) with of the ligand H2L4 (2 g, 5.2 mmol) dissolved in CH2Cl2 (25 ml). The ligand solution was added drop-wise to the solution of the metal salt and stirred at room temperature for 24 h. The mixture was then concentrated by evaporation under reduced pressure to afford a thick greenish liquid. Part of the complex was dissolved in dimethyl formamide (DMF), filtered and layered with diethyl ether for slow diffusion and X-ray quality crystals were obtained.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.99 Å and N—H distances of 0.92 (primary amine) and 0.93 (secondary amine) with Uiso(H) = 1.2Ueq(C, N). Even though a face-indexed absorption correction was carried out, the thermal parameters for C3, C6, C7, and N4 atoms did not behave well and thus were restrained using ISOR command in SHELXL. The crystal was originally refined as a racemic twin with components 0.87 (3):0.13 (3). However, as the absolute configuration was not established unambiguously, the data were merged. In addition, the highest peak (2.50 e-3, 0.70 Å from Cu) and deepest hole (-1.98 e-3, 0.54 Å from Br2) are indicative of the problems with both the racemic twinning and absorption effects.

Figures

Fig. 1.
An ORTEP drawing of the title complex showing atom labeling. Thermal ellipsoids are drawn at the 30% probability level.
Fig. 2.
The molecular packing for the title compound viewed down the a axis. Hydrogen bonds are showed by dashed lines.

Crystal data

[CuBr2(C8H22N4)]F(000) = 788
Mr = 397.66Dx = 1.875 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4805 reflections
a = 6.9666 (4) Åθ = 4.6–32.8°
b = 8.4146 (6) ŵ = 7.20 mm1
c = 24.0261 (15) ÅT = 110 K
V = 1408.45 (15) Å3Prism, dark blue
Z = 40.47 × 0.31 × 0.22 mm

Data collection

Goniometer Xcalibur, detector Ruby (Gemini Mo) diffractometer2758 independent reflections
Radiation source: Enhance (Mo) X-ray Source2262 reflections with I > 2σ(I)
graphiteRint = 0.072
Detector resolution: 10.5081 pixels mm-1θmax = 32.8°, θmin = 4.6°
ω scansh = −10→9
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2007)k = −12→11
Tmin = 0.157, Tmax = 0.282l = −36→35
9561 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.103P)2 + 8.8289P] where P = (Fo2 + 2Fc2)/3
2758 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 2.51 e Å3
24 restraintsΔρmin = −1.98 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.84387 (19)0.88632 (13)0.11140 (4)0.0099 (2)
Br11.15943 (15)1.06828 (12)0.15326 (4)0.0187 (2)
Br20.52369 (16)0.69368 (14)0.06892 (5)0.0225 (3)
N10.8009 (12)1.0062 (10)0.0394 (3)0.0132 (16)
H1C0.90130.98230.01600.016*
H1D0.69140.96610.02330.016*
N20.6456 (12)1.0252 (8)0.1509 (3)0.0106 (13)
H2C0.52560.99010.13920.013*
N30.8538 (13)0.7653 (9)0.1852 (3)0.0125 (14)
H3C0.96010.80350.20440.015*
N41.0360 (12)0.7415 (9)0.0756 (3)0.0110 (14)
H4C1.02150.75080.03760.013*
H4D1.15620.77960.08410.013*
C10.7815 (17)1.1841 (12)0.0409 (4)0.0178 (19)
H1A0.90311.23160.05420.021*
H1B0.75711.22400.00280.021*
C20.6201 (14)1.2343 (11)0.0785 (4)0.0143 (18)
H2A0.50181.17860.06660.017*
H2B0.59831.34960.07340.017*
C30.6518 (15)1.2020 (11)0.1399 (4)0.0123 (15)
H3A0.77801.24510.15140.015*
H3B0.55111.25590.16200.015*
C40.6583 (17)0.9909 (12)0.2110 (4)0.0160 (17)
H4A0.54071.02790.23020.019*
H4B0.77001.04670.22740.019*
C50.6801 (16)0.8160 (13)0.2179 (4)0.0179 (19)
H5A0.56440.76060.20390.021*
H5B0.69700.78910.25770.021*
C60.8734 (14)0.5888 (11)0.1836 (4)0.0138 (18)
H6A0.75840.54210.16580.017*
H6B0.88130.54730.22210.017*
C71.0503 (15)0.5394 (11)0.1517 (4)0.0158 (18)
H7A1.07390.42480.15810.019*
H7B1.16230.59860.16630.019*
C81.0339 (15)0.5691 (11)0.0892 (4)0.0142 (17)
H8A1.14190.51610.07000.017*
H8B0.91300.52160.07540.017*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0119 (5)0.0064 (4)0.0113 (4)0.0022 (4)0.0026 (4)0.0007 (4)
Br10.0107 (4)0.0185 (5)0.0270 (5)−0.0016 (4)−0.0007 (4)−0.0062 (4)
Br20.0169 (5)0.0213 (5)0.0293 (5)−0.0013 (4)−0.0023 (4)−0.0026 (4)
N10.011 (4)0.011 (4)0.017 (4)−0.004 (3)−0.001 (3)0.002 (3)
N20.010 (3)0.005 (3)0.017 (3)0.001 (3)−0.001 (3)−0.001 (3)
N30.011 (3)0.012 (3)0.015 (3)−0.001 (3)0.003 (3)0.002 (3)
N40.008 (3)0.009 (3)0.016 (3)0.002 (2)0.002 (2)0.000 (2)
C10.023 (5)0.012 (4)0.018 (4)−0.002 (4)0.003 (4)0.005 (4)
C20.012 (4)0.005 (3)0.026 (5)0.004 (3)0.001 (3)0.002 (3)
C30.012 (3)0.006 (3)0.019 (3)0.001 (3)0.001 (3)0.002 (3)
C40.017 (4)0.021 (4)0.010 (3)0.002 (4)0.004 (4)−0.002 (3)
C50.019 (5)0.020 (4)0.015 (4)0.006 (4)0.006 (4)0.003 (4)
C60.016 (4)0.009 (3)0.017 (3)0.003 (3)0.002 (3)0.004 (3)
C70.020 (4)0.009 (3)0.018 (3)0.005 (3)0.001 (3)0.003 (3)
C80.016 (4)0.009 (4)0.017 (4)0.004 (4)0.004 (3)−0.003 (3)

Geometric parameters (Å, °)

Cu—N42.005 (8)C1—H1B0.9900
Cu—N12.025 (8)C2—C31.517 (13)
Cu—N22.043 (8)C2—H2A0.9900
Cu—N32.046 (8)C2—H2B0.9900
Cu—Br12.8616 (17)C3—H3A0.9900
Cu—Br22.9402 (17)C3—H3B0.9900
N1—C11.503 (13)C4—C51.489 (15)
N1—H1C0.9200C4—H4A0.9900
N1—H1D0.9200C4—H4B0.9900
N2—C41.476 (12)C5—H5A0.9900
N2—C31.512 (11)C5—H5B0.9900
N2—H2C0.9300C6—C71.510 (14)
N3—C61.492 (11)C6—H6A0.9900
N3—C51.504 (13)C6—H6B0.9900
N3—H3C0.9300C7—C81.526 (14)
N4—C81.487 (12)C7—H7A0.9900
N4—H4C0.9200C7—H7B0.9900
N4—H4D0.9200C8—H8A0.9900
C1—C21.503 (14)C8—H8B0.9900
C1—H1A0.9900
N4—Cu—N192.0 (3)H1A—C1—H1B108.0
N4—Cu—N2177.1 (3)C1—C2—C3115.2 (8)
N1—Cu—N290.7 (3)C1—C2—H2A108.5
N4—Cu—N392.7 (3)C3—C2—H2A108.5
N1—Cu—N3173.4 (4)C1—C2—H2B108.5
N2—Cu—N384.6 (3)C3—C2—H2B108.5
N4—Cu—Br187.9 (2)H2A—C2—H2B107.5
N1—Cu—Br198.5 (2)N2—C3—C2110.0 (7)
N2—Cu—Br192.9 (2)N2—C3—H3A109.7
N3—Cu—Br186.3 (3)C2—C3—H3A109.7
N4—Cu—Br291.3 (2)N2—C3—H3B109.7
N1—Cu—Br282.3 (2)C2—C3—H3B109.7
N2—Cu—Br287.9 (2)H3A—C3—H3B108.2
N3—Cu—Br293.0 (3)N2—C4—C5107.9 (8)
Br1—Cu—Br2178.89 (6)N2—C4—H4A110.1
C1—N1—Cu119.3 (7)C5—C4—H4A110.1
C1—N1—H1C107.5N2—C4—H4B110.1
Cu—N1—H1C107.5C5—C4—H4B110.1
C1—N1—H1D107.5H4A—C4—H4B108.4
Cu—N1—H1D107.5C4—C5—N3107.7 (9)
H1C—N1—H1D107.0C4—C5—H5A110.2
C4—N2—C3111.2 (7)N3—C5—H5A110.2
C4—N2—Cu107.6 (6)C4—C5—H5B110.2
C3—N2—Cu117.6 (6)N3—C5—H5B110.2
C4—N2—H2C106.6H5A—C5—H5B108.5
C3—N2—H2C106.6N3—C6—C7111.2 (8)
Cu—N2—H2C106.6N3—C6—H6A109.4
C6—N3—C5111.7 (8)C7—C6—H6A109.4
C6—N3—Cu118.5 (6)N3—C6—H6B109.4
C5—N3—Cu106.5 (6)C7—C6—H6B109.4
C6—N3—H3C106.5H6A—C6—H6B108.0
C5—N3—H3C106.5C6—C7—C8113.1 (8)
Cu—N3—H3C106.5C6—C7—H7A109.0
C8—N4—Cu119.4 (6)C8—C7—H7A109.0
C8—N4—H4C107.5C6—C7—H7B109.0
Cu—N4—H4C107.5C8—C7—H7B109.0
C8—N4—H4D107.5H7A—C7—H7B107.8
Cu—N4—H4D107.5N4—C8—C7112.1 (8)
H4C—N4—H4D107.0N4—C8—H8A109.2
C2—C1—N1111.2 (8)C7—C8—H8A109.2
C2—C1—H1A109.4N4—C8—H8B109.2
N1—C1—H1A109.4C7—C8—H8B109.2
C2—C1—H1B109.4H8A—C8—H8B107.9
N1—C1—H1B109.4
N4—Cu—N1—C1−139.1 (8)N1—Cu—N4—C8−138.9 (7)
N2—Cu—N1—C142.1 (8)N3—Cu—N4—C836.5 (7)
Br1—Cu—N1—C1−50.9 (8)Br1—Cu—N4—C8122.7 (7)
Br2—Cu—N1—C1129.9 (8)Br2—Cu—N4—C8−56.6 (7)
N1—Cu—N2—C4−170.1 (6)Cu—N1—C1—C2−57.3 (11)
N3—Cu—N2—C414.4 (6)N1—C1—C2—C367.5 (11)
Br1—Cu—N2—C4−71.6 (6)C4—N2—C3—C2−174.8 (8)
Br2—Cu—N2—C4107.6 (6)Cu—N2—C3—C260.6 (10)
N1—Cu—N2—C3−43.7 (7)C1—C2—C3—N2−69.7 (11)
N3—Cu—N2—C3140.8 (7)C3—N2—C4—C5−171.9 (9)
Br1—Cu—N2—C354.8 (6)Cu—N2—C4—C5−41.8 (10)
Br2—Cu—N2—C3−126.0 (6)N2—C4—C5—N356.4 (11)
N4—Cu—N3—C6−37.2 (8)C6—N3—C5—C4−172.8 (8)
N2—Cu—N3—C6141.9 (8)Cu—N3—C5—C4−42.0 (9)
Br1—Cu—N3—C6−124.9 (7)C5—N3—C6—C7−178.8 (8)
Br2—Cu—N3—C654.3 (7)Cu—N3—C6—C756.9 (10)
N4—Cu—N3—C5−164.0 (7)N3—C6—C7—C8−70.4 (11)
N2—Cu—N3—C515.1 (6)Cu—N4—C8—C7−55.5 (10)
Br1—Cu—N3—C5108.3 (6)C6—C7—C8—N469.7 (11)
Br2—Cu—N3—C5−72.5 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···Br2i0.922.663.466 (9)147.
N1—H1D···Br20.922.803.339 (8)119.
N2—H2C···Br1ii0.932.663.407 (8)138.
N2—H2C···Br20.933.013.519 (7)116.
N3—H3C···Br10.932.903.409 (8)116.
N4—H4C···Br2i0.922.603.515 (8)171.
N4—H4D···Br2iii0.922.693.425 (8)138.
N4—H4D···Br10.922.943.433 (8)115.

Symmetry codes: (i) x+1/2, −y+3/2, −z; (ii) x−1, y, z; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2444).

References

  • Jahn, H. & Teller, E. (1937). Proc. R. Soc. London Ser. A, pp. 220–235.
  • Lee, T.-Y., Lee, T.-J., Hong, C.-Y., Hsieh, M.-Y., Wu, D.-T. & Chung, C.-S. (1986). Acta Cryst. C42, 1316–1319.
  • Oxford Diffraction (2007). CrysAlis PRO and CrysAlis REDOxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography