PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. Sep 1, 2011; 67(Pt 9): o2404.
Published online Aug 27, 2011. doi:  10.1107/S1600536811033642
PMCID: PMC3200810
4′-(4-Chlorophenyl)-1′-methyldispiro[indan-2,2′-pyrrolidine-3′,2′′-indan]-1,3,1′′-trione
Ang Chee Wei,a Mohamed Ashraf Ali,a Yeong Keng Yoon,a Ching Kheng Quah,b and Hoong-Kun Funb*§
aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: hkfun/at/usm.my
Thomson Reuters ResearcherID: A-5525-2009.
§Thomson Reuters ResearcherID: A-3561-2009.
Received August 12, 2011; Accepted August 18, 2011.
In the title compound, C27H20ClNO3, the two cyclo­pentane rings adopt envelope conformations. The pyrrolidine ring also adopts an envelope conformation (with the spiro C atom as the flap) and its least-squares plane (fitted to five atoms) makes dihedral angles of 66.50 (9), 77.36 (8) and 73.76 (8)° with the chloro­benzene ring and the two 2,3-dihydro-1H-indene ring systems, respectively. The mol­ecular conformation is stabilized by an intra­molecular C—H(...)O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked by C—H(...)O hydrogen bonds into chains running parallel to the [001] direction.
Related literature
For background to the synthesis, see: Amalraj & Raghunathan (2003 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]). For graph-set descriptors of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures, see: Kumar et al. (2010 [triangle]); Wei, Ali, Choon et al. (2011 [triangle]); Wei, Ali, Ismail et al. (2011 [triangle]). For standard bond-length data, see: Allen et al. (1987 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-67-o2404-scheme1.jpg Object name is e-67-o2404-scheme1.jpg
Crystal data
  • C27H20ClNO3
  • M r = 441.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-o2404-efi1.jpg
  • a = 7.8216 (1) Å
  • b = 21.2865 (3) Å
  • c = 14.0641 (2) Å
  • β = 116.156 (1)°
  • V = 2101.81 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 100 K
  • 0.43 × 0.11 × 0.10 mm
Data collection
  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.913, T max = 0.979
  • 25402 measured reflections
  • 6459 independent reflections
  • 4537 reflections with I > 2σ(I)
  • R int = 0.047
Refinement
  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.113
  • S = 1.06
  • 6459 reflections
  • 290 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.41 e Å−3
Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811033642/hb6361sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033642/hb6361Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors would like to express their thanks to Universiti Sains Malaysia (USM), Penang, Malaysia, for providing research facilities. HKF and CKQ also thank USM for a Research University Grant (No. 1001/PFIZIK/811160).
supplementary crystallographic information
Comment
1,3-Dipolar cycloaddition is a very useful synthetic strategy to construct heterocycles in which high regio- and stereo-chemical control of peripheral substituents can be achieved (Amalraj & Raghunathan, 2003). As part of our studies in this area, the title compound, (I), was prepared and it structure is now described.
The molecular structure is shown in Fig. 1. The two cyclopentane rings, C1-C3/C8/C9 and C10-C12/C17/C18, are in envelope conformations, puckering parameters (Cremer & Pople, 1975) Q =0.2239 (17) Å and [var phi] = 177.0 (4)° with atom C1 at the flap; and Q = 0.2121 (17) Å and [var phi] = 355.2 (5)° with atom C10 at the flap, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Kumar et al., 2010; Wei, Ali, Choon et al. (2011); Wei, Ali, Ismail et al. (2011). The pyrrolidine ring (N1/C1/C10/C19/C20) adopts an envelope conformation, puckering parameters (Cremer & Pople, 1975) Q = 0.4461 (17) Å and [var phi] = 41.6 (2)°, with atom C1 at the flap and its least-squares plane makes dihedral angles of 66.50 (9), 77.36 (8) and 73.76 (8)° with a phenyl ring (C22-C27) and the two least-squares planes of 2,3-dihydro-1H-indene ring system [C1-C9 (maximum deviation of 0.234 (2) Å at atom C1) and C10-C18 (maximum deviation of 0.221 (2) Å at atom C10)], respectively. The molecular structure is stabilized by an intramolecular C18–H18A···O2 hydrogen bond (Table 1), which generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995).
In the crystal (Fig. 2), molecules are linked by C6–H6A···O1 and C14–H14A···O3 hydrogen bonds (Table 1) into one-dimensional chains parallel to [001] direction.
Experimental
A mixture of (E)2-(4-chlorobenzylidene)-2,3-dihydro-1H- indene-1-one (0.001 mmol), ninhydrin (0.001 mmol) and sarcosine (0.002 mmol) (1:1:2) were dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered, washed with water and recrystallised from pet.ether-ethyl acetate mixture (1:1) to reveal the title compound as yellow crystals.
Refinement
All H atoms were positioned geometrically and refined using a riding model with C–H = 0.95-1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group. The highest residual electron density peak is located at 0.73 Å from atom C10 and the deepest hole is located at 0.49 Å from atom Cl1.
Figures
Fig. 1.
Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.
Fig. 2.
Fig. 2.
The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
Crystal data
C27H20ClNO3F(000) = 920
Mr = 441.89Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5352 reflections
a = 7.8216 (1) Åθ = 2.5–30.6°
b = 21.2865 (3) ŵ = 0.21 mm1
c = 14.0641 (2) ÅT = 100 K
β = 116.156 (1)°Needle, yellow
V = 2101.81 (5) Å30.43 × 0.11 × 0.10 mm
Z = 4
Data collection
Bruker SMART APEXII CCD diffractometer6459 independent reflections
Radiation source: fine-focus sealed tube4537 reflections with I > 2σ(I)
graphiteRint = 0.047
[var phi] and ω scansθmax = 30.7°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −11→11
Tmin = 0.913, Tmax = 0.979k = −28→30
25402 measured reflectionsl = −20→19
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0402P)2 + 0.7009P] where P = (Fo2 + 2Fc2)/3
6459 reflections(Δ/σ)max = 0.003
290 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.41 e Å3
Special details
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
Cl11.36538 (5)1.10023 (2)0.43329 (4)0.03235 (12)
O10.34773 (16)0.84249 (6)0.29205 (9)0.0267 (3)
O20.21665 (15)0.90315 (5)−0.05015 (9)0.0238 (2)
O30.76083 (16)0.81058 (5)0.28215 (9)0.0259 (3)
N10.32278 (17)0.95682 (6)0.16129 (10)0.0186 (3)
C10.3793 (2)0.89484 (7)0.14450 (12)0.0174 (3)
C20.3456 (2)0.83915 (7)0.20561 (12)0.0192 (3)
C30.3038 (2)0.78302 (7)0.13665 (12)0.0195 (3)
C40.3012 (2)0.71988 (8)0.16125 (13)0.0226 (3)
H4A0.32360.70710.23050.027*
C50.2648 (2)0.67623 (8)0.08182 (14)0.0248 (3)
H5A0.26250.63280.09700.030*
C60.2312 (2)0.69460 (8)−0.02046 (13)0.0247 (3)
H6A0.20870.6636−0.07320.030*
C70.2303 (2)0.75755 (8)−0.04577 (13)0.0222 (3)
H7A0.20520.7703−0.11540.027*
C80.2672 (2)0.80142 (7)0.03387 (12)0.0185 (3)
C90.2784 (2)0.87074 (7)0.02905 (12)0.0187 (3)
C100.60072 (19)0.90486 (7)0.18206 (12)0.0163 (3)
C110.7080 (2)0.84175 (7)0.20191 (12)0.0182 (3)
C120.7325 (2)0.82736 (7)0.10625 (12)0.0180 (3)
C130.7860 (2)0.77077 (8)0.07756 (14)0.0247 (3)
H13A0.81900.73540.12340.030*
C140.7896 (2)0.76766 (9)−0.01978 (14)0.0302 (4)
H14A0.82210.7293−0.04240.036*
C150.7456 (2)0.82058 (9)−0.08488 (14)0.0300 (4)
H15A0.75040.8178−0.15110.036*
C160.6949 (2)0.87731 (9)−0.05530 (13)0.0246 (3)
H16A0.66680.9132−0.09980.029*
C170.68632 (19)0.88006 (7)0.04162 (12)0.0186 (3)
C180.6335 (2)0.93495 (7)0.09163 (12)0.0178 (3)
H18A0.51640.95580.03970.021*
H18B0.73790.96620.11970.021*
C190.6508 (2)0.94344 (7)0.28455 (12)0.0178 (3)
H19A0.67490.91260.34270.021*
C200.4657 (2)0.97897 (8)0.26487 (12)0.0215 (3)
H20A0.42590.96920.32100.026*
H20B0.48431.02490.26370.026*
C210.1256 (2)0.96362 (8)0.14474 (13)0.0251 (3)
H21A0.03960.94770.07440.038*
H21B0.09831.00810.14990.038*
H21C0.10690.93960.19890.038*
C220.8282 (2)0.98346 (7)0.31889 (12)0.0178 (3)
C231.0004 (2)0.96051 (8)0.39638 (12)0.0200 (3)
H23A1.00370.92020.42610.024*
C241.1670 (2)0.99542 (8)0.43099 (12)0.0219 (3)
H24A1.28350.97920.48360.026*
C251.1605 (2)1.05421 (8)0.38765 (13)0.0219 (3)
C260.9925 (2)1.07773 (8)0.30868 (13)0.0220 (3)
H26A0.99031.11760.27790.026*
C270.8274 (2)1.04207 (7)0.27535 (12)0.0208 (3)
H27A0.71171.05810.22170.025*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
Cl10.01834 (18)0.0288 (2)0.0454 (3)−0.00521 (15)0.00986 (18)−0.00980 (19)
O10.0324 (6)0.0327 (7)0.0189 (6)−0.0058 (5)0.0150 (5)−0.0018 (5)
O20.0238 (5)0.0275 (6)0.0181 (6)−0.0004 (5)0.0074 (5)0.0036 (5)
O30.0294 (6)0.0252 (6)0.0228 (6)0.0031 (5)0.0111 (5)0.0051 (5)
N10.0156 (5)0.0206 (7)0.0203 (7)0.0007 (5)0.0084 (5)−0.0025 (5)
C10.0158 (6)0.0189 (7)0.0181 (8)−0.0009 (5)0.0081 (6)−0.0007 (6)
C20.0164 (6)0.0238 (8)0.0179 (8)−0.0017 (6)0.0079 (6)0.0005 (6)
C30.0167 (6)0.0228 (8)0.0202 (8)−0.0028 (6)0.0094 (6)−0.0012 (6)
C40.0208 (7)0.0269 (8)0.0221 (8)−0.0016 (6)0.0114 (6)0.0028 (7)
C50.0249 (8)0.0204 (8)0.0330 (10)−0.0022 (6)0.0162 (7)0.0007 (7)
C60.0261 (8)0.0244 (8)0.0281 (9)−0.0047 (6)0.0159 (7)−0.0070 (7)
C70.0213 (7)0.0269 (9)0.0204 (8)−0.0048 (6)0.0109 (6)−0.0030 (7)
C80.0158 (6)0.0213 (8)0.0190 (8)−0.0019 (5)0.0083 (6)0.0004 (6)
C90.0152 (6)0.0239 (8)0.0184 (8)−0.0024 (5)0.0088 (6)−0.0013 (6)
C100.0152 (6)0.0176 (7)0.0170 (7)−0.0004 (5)0.0078 (6)−0.0002 (6)
C110.0162 (6)0.0187 (7)0.0188 (8)−0.0014 (5)0.0068 (6)0.0000 (6)
C120.0141 (6)0.0207 (8)0.0181 (8)−0.0013 (5)0.0061 (6)−0.0033 (6)
C130.0208 (7)0.0237 (8)0.0283 (9)0.0015 (6)0.0097 (7)−0.0051 (7)
C140.0238 (8)0.0347 (10)0.0322 (10)0.0005 (7)0.0123 (7)−0.0149 (8)
C150.0229 (8)0.0470 (11)0.0225 (9)−0.0024 (7)0.0122 (7)−0.0105 (8)
C160.0193 (7)0.0362 (10)0.0181 (8)−0.0019 (6)0.0083 (6)−0.0012 (7)
C170.0138 (6)0.0243 (8)0.0177 (8)−0.0032 (5)0.0069 (6)−0.0046 (6)
C180.0172 (7)0.0182 (7)0.0180 (8)−0.0009 (5)0.0077 (6)0.0007 (6)
C190.0171 (6)0.0200 (8)0.0172 (8)−0.0013 (5)0.0084 (6)−0.0018 (6)
C200.0179 (7)0.0247 (8)0.0231 (8)−0.0012 (6)0.0100 (6)−0.0055 (6)
C210.0175 (7)0.0318 (9)0.0273 (9)0.0016 (6)0.0110 (7)−0.0020 (7)
C220.0173 (6)0.0201 (8)0.0171 (7)0.0006 (5)0.0086 (6)−0.0042 (6)
C230.0204 (7)0.0221 (8)0.0181 (8)0.0027 (6)0.0089 (6)0.0000 (6)
C240.0157 (6)0.0282 (9)0.0187 (8)0.0042 (6)0.0048 (6)−0.0016 (7)
C250.0159 (7)0.0252 (8)0.0245 (8)−0.0025 (6)0.0089 (6)−0.0080 (7)
C260.0206 (7)0.0191 (8)0.0265 (9)0.0005 (6)0.0105 (7)−0.0020 (7)
C270.0172 (7)0.0225 (8)0.0204 (8)0.0019 (6)0.0062 (6)−0.0021 (6)
Geometric parameters (Å, °)
Cl1—C251.7413 (15)C13—H13A0.9500
O1—C21.2106 (18)C14—C151.396 (3)
O2—C91.2148 (18)C14—H14A0.9500
O3—C111.2139 (18)C15—C161.391 (2)
N1—C11.4435 (19)C15—H15A0.9500
N1—C211.4616 (18)C16—C171.395 (2)
N1—C201.4692 (19)C16—H16A0.9500
C1—C91.547 (2)C17—C181.512 (2)
C1—C21.553 (2)C18—H18A0.9900
C1—C101.5869 (19)C18—H18B0.9900
C2—C31.482 (2)C19—C221.515 (2)
C3—C41.390 (2)C19—C201.546 (2)
C3—C81.400 (2)C19—H19A1.0000
C4—C51.383 (2)C20—H20A0.9900
C4—H4A0.9500C20—H20B0.9900
C5—C61.399 (2)C21—H21A0.9800
C5—H5A0.9500C21—H21B0.9800
C6—C71.386 (2)C21—H21C0.9800
C6—H6A0.9500C22—C271.389 (2)
C7—C81.388 (2)C22—C231.395 (2)
C7—H7A0.9500C23—C241.389 (2)
C8—C91.481 (2)C23—H23A0.9500
C10—C111.543 (2)C24—C251.383 (2)
C10—C181.543 (2)C24—H24A0.9500
C10—C191.552 (2)C25—C261.388 (2)
C11—C121.472 (2)C26—C271.389 (2)
C12—C171.388 (2)C26—H26A0.9500
C12—C131.392 (2)C27—H27A0.9500
C13—C141.383 (2)
C1—N1—C21116.22 (12)C16—C15—C14121.65 (16)
C1—N1—C20107.55 (12)C16—C15—H15A119.2
C21—N1—C20114.48 (12)C14—C15—H15A119.2
N1—C1—C9115.06 (12)C15—C16—C17118.13 (16)
N1—C1—C2117.92 (12)C15—C16—H16A120.9
C9—C1—C2101.26 (12)C17—C16—H16A120.9
N1—C1—C10100.98 (11)C12—C17—C16119.69 (15)
C9—C1—C10111.78 (11)C12—C17—C18111.45 (13)
C2—C1—C10110.17 (12)C16—C17—C18128.86 (15)
O1—C2—C3127.30 (14)C17—C18—C10103.97 (12)
O1—C2—C1125.47 (14)C17—C18—H18A111.0
C3—C2—C1107.19 (12)C10—C18—H18A111.0
C4—C3—C8120.59 (15)C17—C18—H18B111.0
C4—C3—C2129.78 (14)C10—C18—H18B111.0
C8—C3—C2109.62 (13)H18A—C18—H18B109.0
C5—C4—C3117.96 (15)C22—C19—C20115.83 (13)
C5—C4—H4A121.0C22—C19—C10114.48 (12)
C3—C4—H4A121.0C20—C19—C10105.05 (12)
C4—C5—C6121.41 (15)C22—C19—H19A107.0
C4—C5—H5A119.3C20—C19—H19A107.0
C6—C5—H5A119.3C10—C19—H19A107.0
C7—C6—C5120.78 (15)N1—C20—C19105.29 (12)
C7—C6—H6A119.6N1—C20—H20A110.7
C5—C6—H6A119.6C19—C20—H20A110.7
C6—C7—C8117.89 (15)N1—C20—H20B110.7
C6—C7—H7A121.1C19—C20—H20B110.7
C8—C7—H7A121.1H20A—C20—H20B108.8
C7—C8—C3121.35 (15)N1—C21—H21A109.5
C7—C8—C9128.97 (14)N1—C21—H21B109.5
C3—C8—C9109.68 (13)H21A—C21—H21B109.5
O2—C9—C8126.87 (14)N1—C21—H21C109.5
O2—C9—C1125.93 (14)H21A—C21—H21C109.5
C8—C9—C1107.18 (13)H21B—C21—H21C109.5
C11—C10—C18103.63 (11)C27—C22—C23118.29 (14)
C11—C10—C19113.48 (12)C27—C22—C19122.66 (13)
C18—C10—C19118.72 (12)C23—C22—C19119.05 (14)
C11—C10—C1111.72 (12)C24—C23—C22121.35 (15)
C18—C10—C1109.58 (11)C24—C23—H23A119.3
C19—C10—C199.89 (11)C22—C23—H23A119.3
O3—C11—C12127.43 (14)C25—C24—C23118.90 (14)
O3—C11—C10125.39 (14)C25—C24—H24A120.6
C12—C11—C10107.18 (12)C23—C24—H24A120.6
C17—C12—C13122.31 (15)C24—C25—C26121.14 (14)
C17—C12—C11109.22 (13)C24—C25—Cl1119.84 (12)
C13—C12—C11128.44 (15)C26—C25—Cl1119.02 (13)
C14—C13—C12117.91 (16)C25—C26—C27118.99 (15)
C14—C13—H13A121.0C25—C26—H26A120.5
C12—C13—H13A121.0C27—C26—H26A120.5
C13—C14—C15120.28 (16)C26—C27—C22121.31 (14)
C13—C14—H14A119.9C26—C27—H27A119.3
C15—C14—H14A119.9C22—C27—H27A119.3
C21—N1—C1—C965.60 (16)C1—C10—C11—O3−82.09 (18)
C20—N1—C1—C9−164.59 (12)C18—C10—C11—C12−20.04 (14)
C21—N1—C1—C2−53.86 (18)C19—C10—C11—C12−150.16 (12)
C20—N1—C1—C275.96 (15)C1—C10—C11—C1297.84 (13)
C21—N1—C1—C10−173.87 (12)O3—C11—C12—C17−168.37 (15)
C20—N1—C1—C10−44.06 (14)C10—C11—C12—C1711.70 (15)
N1—C1—C2—O1−30.5 (2)O3—C11—C12—C1313.8 (3)
C9—C1—C2—O1−156.98 (15)C10—C11—C12—C13−166.11 (14)
C10—C1—C2—O184.59 (18)C17—C12—C13—C14−1.0 (2)
N1—C1—C2—C3147.34 (13)C11—C12—C13—C14176.57 (14)
C9—C1—C2—C320.88 (14)C12—C13—C14—C151.7 (2)
C10—C1—C2—C3−97.55 (13)C13—C14—C15—C16−0.9 (2)
O1—C2—C3—C4−16.6 (3)C14—C15—C16—C17−0.8 (2)
C1—C2—C3—C4165.63 (15)C13—C12—C17—C16−0.7 (2)
O1—C2—C3—C8164.77 (15)C11—C12—C17—C16−178.66 (13)
C1—C2—C3—C8−13.04 (16)C13—C12—C17—C18179.99 (13)
C8—C3—C4—C51.1 (2)C11—C12—C17—C182.02 (16)
C2—C3—C4—C5−177.40 (14)C15—C16—C17—C121.6 (2)
C3—C4—C5—C6−0.1 (2)C15—C16—C17—C18−179.24 (14)
C4—C5—C6—C7−1.1 (2)C12—C17—C18—C10−14.68 (15)
C5—C6—C7—C81.2 (2)C16—C17—C18—C10166.07 (14)
C6—C7—C8—C3−0.1 (2)C11—C10—C18—C1720.42 (14)
C6—C7—C8—C9178.77 (14)C19—C10—C18—C17147.31 (12)
C4—C3—C8—C7−1.0 (2)C1—C10—C18—C17−98.94 (13)
C2—C3—C8—C7177.77 (13)C11—C10—C19—C2284.37 (16)
C4—C3—C8—C9179.86 (13)C18—C10—C19—C22−37.69 (18)
C2—C3—C8—C9−1.33 (16)C1—C10—C19—C22−156.60 (12)
C7—C8—C9—O217.7 (2)C11—C10—C19—C20−147.44 (12)
C3—C8—C9—O2−163.28 (14)C18—C10—C19—C2090.49 (14)
C7—C8—C9—C1−163.78 (14)C1—C10—C19—C20−28.42 (14)
C3—C8—C9—C115.24 (15)C1—N1—C20—C1925.91 (15)
N1—C1—C9—O228.6 (2)C21—N1—C20—C19156.70 (13)
C2—C1—C9—O2156.89 (14)C22—C19—C20—N1131.17 (13)
C10—C1—C9—O2−85.85 (17)C10—C19—C20—N13.81 (15)
N1—C1—C9—C8−149.97 (12)C20—C19—C22—C27−40.6 (2)
C2—C1—C9—C8−21.64 (14)C10—C19—C22—C2781.89 (17)
C10—C1—C9—C895.62 (14)C20—C19—C22—C23140.24 (14)
N1—C1—C10—C11164.09 (12)C10—C19—C22—C23−97.25 (16)
C9—C1—C10—C11−73.08 (15)C27—C22—C23—C241.1 (2)
C2—C1—C10—C1138.68 (16)C19—C22—C23—C24−179.73 (13)
N1—C1—C10—C18−81.66 (13)C22—C23—C24—C250.3 (2)
C9—C1—C10—C1841.17 (16)C23—C24—C25—C26−1.8 (2)
C2—C1—C10—C18152.93 (12)C23—C24—C25—Cl1177.50 (12)
N1—C1—C10—C1943.77 (13)C24—C25—C26—C271.9 (2)
C9—C1—C10—C19166.61 (12)Cl1—C25—C26—C27−177.41 (12)
C2—C1—C10—C19−81.64 (14)C25—C26—C27—C22−0.5 (2)
C18—C10—C11—O3160.03 (14)C23—C22—C27—C26−1.0 (2)
C19—C10—C11—O329.9 (2)C19—C22—C27—C26179.86 (14)
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
C18—H18A···O20.992.403.055 (2)123
C6—H6A···O1i0.952.573.244 (2)128
C14—H14A···O3i0.952.453.167 (2)132
Symmetry codes: (i) x, −y+3/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6361).
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Amalraj, A. & Raghunathan, R. (2003). Tetrahedron, 59, 2907–2911.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  • Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1540–o1541. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2383. [PMC free article] [PubMed]
  • Wei, A. C., Ali, M. A., Ismail, R., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2381–o2382. [PMC free article] [PubMed]
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography