PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2011 September 1; 67(Pt 9): o2332.
Published online 2011 August 11. doi:  10.1107/S1600536811031928
PMCID: PMC3200599

(E)-4-Phenyl­butan-2-one oxime

Abstract

In the title compound, C10H13NO, the C—C—C—C torsion angle formed between the benzene ring and the butan-2-one oxime unit is 73.7 (2)°, with the latter lying above the plane through the benzene ring. In the crystal, inter­molecular O—H(...)N hydrogen bonds link pairs of mol­ecules into dimers, forming R 2 2(6) ring motifs which are stacked along the a axis.

Related literature

For background to oximes and their microbial activity, see: El-Sabbagh et al. (1990 [triangle]); El-Sayed et al. (1996 [triangle]); Althuis et al. (1979 [triangle]); Nargund et al. (1992 [triangle]); Srivastava et al. (2004 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-67-o2332-scheme1.jpg

Experimental

Crystal data

  • C10H13NO
  • M r = 163.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-o2332-efi1.jpg
  • a = 5.450 (3) Å
  • b = 9.698 (6) Å
  • c = 18.455 (12) Å
  • β = 93.888 (13)°
  • V = 973.1 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 297 K
  • 0.67 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.953, T max = 0.992
  • 10336 measured reflections
  • 2808 independent reflections
  • 1448 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.183
  • S = 1.04
  • 2808 reflections
  • 110 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031928/tk2777sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031928/tk2777Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536811031928/tk2777Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for a Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship.

supplementary crystallographic information

Comment

Oximes are important intermediates for the preparation of primary amines by reduction. The primary amine generated can be used for the preparation of many heterocycles like quinoline, azetidinone, 1,2,4-triazole and 1,3,4-thiadiazole, benzothiazipines and thiazolidinone. These heterocycles show various biological activities such as anti-cancer (El-Sabbagh et al., 1990), anti-inflammatory (El-Sayed et al., 1996), anti-allergics (Althuis et al., 1979) anti-microbial (Nargund et al., 1992) and anthelmintic activities (Srivastava et al., 2004). The above motivated us to synthesize the title compound, (E)-4-phenylbutan-2-one oxime.

In the title compound (Fig. 1), the torsion angle, C5–C6–C7–C8, formed between the benzene ring (C1–C6) and the butan-2-one oxime (C7–C10/N1/O1) unit is 73.7 (2)°.

In the crystal packing (Fig. 2), pairs of intermolecular O1—H1O1···N1 hydrogen bonds (Table 1) link the molecules into dimers forming R22(6) ring motifs (Bernstein et al., 1995) which are stacked along the a axis.

Experimental

A mixture of 5-phenylpentan-2-one (2 g, 0.012 mole) and hydroxylamine HCl (1.25 g 0.0184 mole) in ethanol was refluxed for 4 h, during which white crystals separated out. After cooling to room temperature, the resulting (E)-4-phenylbutan-2-one oxime was filtered-off, dried and recrystallized from ethanol. Yield, 1.8 g (90%). Crystals suitable for X-ray analysis were obtained from its acetone solution by slow evaporation.

Refinement

H1O1 was located from the difference Fourier map and was fixed at this position with Uiso(H) = 1.5 Ueq(O) [O–H = 0.8540 Å]. The remaining H atoms were positioned geometrically and refined using the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.93 to 0.97 Å]. A rotating group model was applied to the methyl group.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis.

Crystal data

C10H13NOF(000) = 352
Mr = 163.21Dx = 1.114 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1653 reflections
a = 5.450 (3) Åθ = 3.8–22.7°
b = 9.698 (6) ŵ = 0.07 mm1
c = 18.455 (12) ÅT = 297 K
β = 93.888 (13)°Needle, colourless
V = 973.1 (11) Å30.67 × 0.15 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer2808 independent reflections
Radiation source: fine-focus sealed tube1448 reflections with I > 2σ(I)
graphiteRint = 0.033
[var phi] and ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −7→7
Tmin = 0.953, Tmax = 0.992k = −13→13
10336 measured reflectionsl = −18→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0833P)2 + 0.063P] where P = (Fo2 + 2Fc2)/3
2808 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.0482 (2)0.64909 (13)0.46391 (6)0.0829 (4)
H1O1−0.03820.57640.45640.124*
N10.1886 (2)0.60421 (14)0.52725 (7)0.0663 (4)
C10.8076 (3)0.3977 (2)0.72018 (9)0.0761 (5)
H1A0.81500.34230.67930.091*
C20.9742 (4)0.3766 (3)0.77902 (11)0.0949 (6)
H2A1.08960.30620.77750.114*
C30.9709 (4)0.4577 (3)0.83903 (11)0.0972 (7)
H3A1.08440.44330.87830.117*
C40.8004 (4)0.5602 (3)0.84143 (10)0.0977 (7)
H4A0.79890.61690.88210.117*
C50.6284 (4)0.5800 (2)0.78301 (10)0.0871 (6)
H5A0.51000.64860.78560.104*
C60.6307 (3)0.49911 (17)0.72088 (8)0.0644 (4)
C70.4539 (3)0.52421 (19)0.65522 (9)0.0771 (5)
H7A0.28880.53510.67100.093*
H7B0.45420.44470.62330.093*
C80.5231 (3)0.65179 (17)0.61365 (9)0.0691 (5)
H8A0.52230.73000.64640.083*
H8B0.69040.64040.59970.083*
C90.3630 (3)0.68632 (15)0.54665 (8)0.0621 (4)
C100.4212 (4)0.8158 (2)0.50706 (11)0.0922 (6)
H10D0.40400.79930.45570.138*
H10A0.58700.84350.52070.138*
H10B0.30980.88740.51940.138*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0914 (9)0.0805 (8)0.0714 (7)−0.0160 (6)−0.0336 (6)0.0219 (6)
N10.0682 (8)0.0669 (8)0.0603 (7)−0.0095 (6)−0.0206 (6)0.0125 (6)
C10.0762 (11)0.0854 (11)0.0650 (10)0.0016 (10)−0.0076 (8)0.0009 (8)
C20.0778 (12)0.1242 (17)0.0802 (12)0.0272 (12)−0.0129 (10)0.0050 (11)
C30.0823 (13)0.1379 (18)0.0681 (11)0.0064 (13)−0.0184 (9)0.0096 (12)
C40.1167 (17)0.1168 (16)0.0582 (10)0.0051 (14)−0.0042 (10)−0.0083 (10)
C50.0883 (13)0.0952 (13)0.0767 (11)0.0192 (11)−0.0007 (10)0.0041 (10)
C60.0567 (9)0.0725 (10)0.0622 (9)−0.0149 (8)−0.0088 (7)0.0149 (7)
C70.0691 (10)0.0795 (11)0.0787 (11)−0.0199 (9)−0.0238 (8)0.0216 (8)
C80.0655 (9)0.0738 (10)0.0654 (9)−0.0189 (8)−0.0160 (8)0.0101 (7)
C90.0658 (9)0.0599 (8)0.0591 (8)−0.0107 (7)−0.0068 (7)0.0047 (6)
C100.1152 (16)0.0778 (12)0.0808 (12)−0.0301 (11)−0.0151 (11)0.0204 (9)

Geometric parameters (Å, °)

O1—N11.4212 (17)C5—H5A0.9300
O1—H1O10.8540C6—C71.516 (2)
N1—C91.273 (2)C7—C81.517 (2)
C1—C61.378 (3)C7—H7A0.9700
C1—C21.383 (3)C7—H7B0.9700
C1—H1A0.9300C8—C91.502 (2)
C2—C31.360 (3)C8—H8A0.9700
C2—H2A0.9300C8—H8B0.9700
C3—C41.364 (3)C9—C101.497 (2)
C3—H3A0.9300C10—H10D0.9600
C4—C51.393 (3)C10—H10A0.9600
C4—H4A0.9300C10—H10B0.9600
C5—C61.390 (3)
N1—O1—H1O198.1C6—C7—H7A109.3
C9—N1—O1112.95 (12)C8—C7—H7A109.3
C6—C1—C2121.40 (18)C6—C7—H7B109.3
C6—C1—H1A119.3C8—C7—H7B109.3
C2—C1—H1A119.3H7A—C7—H7B108.0
C3—C2—C1120.6 (2)C9—C8—C7116.60 (13)
C3—C2—H2A119.7C9—C8—H8A108.1
C1—C2—H2A119.7C7—C8—H8A108.1
C2—C3—C4119.67 (19)C9—C8—H8B108.1
C2—C3—H3A120.2C7—C8—H8B108.1
C4—C3—H3A120.2H8A—C8—H8B107.3
C3—C4—C5119.97 (19)N1—C9—C10124.47 (15)
C3—C4—H4A120.0N1—C9—C8118.24 (13)
C5—C4—H4A120.0C10—C9—C8117.29 (14)
C6—C5—C4121.15 (19)C9—C10—H10D109.5
C6—C5—H5A119.4C9—C10—H10A109.5
C4—C5—H5A119.4H10D—C10—H10A109.5
C1—C6—C5117.14 (16)C9—C10—H10B109.5
C1—C6—C7120.95 (16)H10D—C10—H10B109.5
C5—C6—C7121.86 (17)H10A—C10—H10B109.5
C6—C7—C8111.64 (13)
C6—C1—C2—C3−1.3 (3)C1—C6—C7—C8−103.8 (2)
C1—C2—C3—C40.5 (3)C5—C6—C7—C873.7 (2)
C2—C3—C4—C51.0 (3)C6—C7—C8—C9179.16 (15)
C3—C4—C5—C6−1.7 (3)O1—N1—C9—C10−1.1 (2)
C2—C1—C6—C50.5 (3)O1—N1—C9—C8179.05 (13)
C2—C1—C6—C7178.14 (17)C7—C8—C9—N1−3.1 (2)
C4—C5—C6—C10.9 (3)C7—C8—C9—C10177.02 (17)
C4—C5—C6—C7−176.64 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i0.851.972.785 (3)160

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2777).

References

  • Althuis, T. H., Moore, P. F. & Hess, H. J. (1979). J. Med. Chem. 22, 44–48. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABSBruker AXS Inc., Madison, Wisconsin, USA.
  • El-Sabbagh, Abadi, H. I., Al-Khawad, A. H. & Al-Rashood, I. E. K. A. (1990). Arch. Pharm. Pharm. Med. Chem. 333, 19–24. [PubMed]
  • El-Sayed, O. A., El-Semary, M. & Khalid, M. A. (1996). Alex. J. Pharm. Sci. 10, 43–46.
  • Nargund, L. V. G., Badiger, V. V. & Yarnal, S. M. (1992). J. Pharm. Sci. 81, 365–366. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Srivastava, S. K., Yadav, R. & Srivastava, S. D. (2004). J. Indian Chem. Soc. 81, 342–343.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography