PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of narLink to Publisher's site
 
Nucleic Acids Res. 1989 April 11; 17(7): 2819–2833.
PMCID: PMC317659

DNA topology of the ordered chromatin domain 5' to the human c-myc gene.

Abstract

DNA restriction fragments located 5' to the human c-myc gene display anomalous electrophoretic mobility on polyacrylamide gels. Computer modeling of the c-myc flanking DNA suggests that the slow-moving DNA fragments spanning nucleotides -1690 to -1054 (relative to c-myc promoter P1) and -718 to -452 form large left handed superhelices or curved structures while the fast-moving DNA fragment spanning nucleotides -407 to +78 has an unusually straight structure. These analyses also predict a periodic array of localized regions of bending through the superhelical domains. Micrococcal nuclease digestion of isolated nuclei reveals that the slow-moving DNA fragments exist in an ordered chromatin structure stable to nuclease, whereas the digestion pattern of the fast-moving DNA fragment suggests a less ordered array of nucleosomes or a non-nucleosomal chromatin structure.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Marini JC, Levene SD, Crothers DM, Englund PT. Bent helical structure in kinetoplast DNA. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7664–7668. [PubMed]
  • Trifonov EN. Curved DNA. CRC Crit Rev Biochem. 1985;19(2):89–106. [PubMed]
  • Koo HS, Wu HM, Crothers DM. DNA bending at adenine . thymine tracts. Nature. 1986 Apr 10;320(6062):501–506. [PubMed]
  • Anderson JN. Detection, sequence patterns and function of unusual DNA structures. Nucleic Acids Res. 1986 Nov 11;14(21):8513–8533. [PMC free article] [PubMed]
  • Bossi L, Smith DM. Conformational change in the DNA associated with an unusual promoter mutation in a tRNA operon of Salmonella. Cell. 1984 Dec;39(3 Pt 2):643–652. [PubMed]
  • Gourse RL, de Boer HA, Nomura M. DNA determinants of rRNA synthesis in E. coli: growth rate dependent regulation, feedback inhibition, upstream activation, antitermination. Cell. 1986 Jan 17;44(1):197–205. [PubMed]
  • Ross W, Shulman M, Landy A. Biochemical analysis of att-defective mutants of the phage lambda site-specific recombination system. J Mol Biol. 1982 Apr 15;156(3):505–522. [PubMed]
  • Linial M, Shlomai J. Sequence-directed bent DNA helix is the specific binding site for Crithidia fasciculata nicking enzyme. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8205–8209. [PubMed]
  • Koepsel RR, Khan SA. Static and initiator protein-enhanced bending of DNA at a replication origin. Science. 1986 Sep 19;233(4770):1316–1318. [PubMed]
  • Zahn K, Blattner FR. Sequence-induced DNA curvature at the bacteriophage lambda origin of replication. Nature. 1985 Oct 3;317(6036):451–453. [PubMed]
  • Ryder K, Silver S, DeLucia AL, Fanning E, Tegtmeyer P. An altered DNA conformation in origin region I is a determinant for the binding of SV40 large T antigen. Cell. 1986 Mar 14;44(5):719–725. [PubMed]
  • Deb S, DeLucia AL, Koff A, Tsui S, Tegtmeyer P. The adenine-thymine domain of the simian virus 40 core origin directs DNA bending and coordinately regulates DNA replication. Mol Cell Biol. 1986 Dec;6(12):4578–4584. [PMC free article] [PubMed]
  • Snyder M, Buchman AR, Davis RW. Bent DNA at a yeast autonomously replicating sequence. Nature. 1986 Nov 6;324(6092):87–89. [PubMed]
  • Eckdahl TT, Anderson JN. Computer modelling of DNA structures involved in chromosome maintenance. Nucleic Acids Res. 1987 Oct 26;15(20):8531–8545. [PMC free article] [PubMed]
  • Williams JS, Eckdahl TT, Anderson JN. Bent DNA functions as a replication enhancer in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jul;8(7):2763–2769. [PMC free article] [PubMed]
  • Srienc F, Bailey JE, Campbell JL. Effect of ARS1 mutations on chromosome stability in Saccharomyces cerevisiae. Mol Cell Biol. 1985 Jul;5(7):1676–1684. [PMC free article] [PubMed]
  • Thoma F, Bergman LW, Simpson RT. Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease-sensitive regions. J Mol Biol. 1984 Aug 25;177(4):715–733. [PubMed]
  • Thoma F, Simpson RT. Local protein-DNA interactions may determine nucleosome positions on yeast plasmids. Nature. 1985 May 16;315(6016):250–252. [PubMed]
  • Thoma F. Protein-DNA interactions and nuclease-sensitive regions determine nucleosome positions on yeast plasmid chromatin. J Mol Biol. 1986 Jul 20;190(2):177–190. [PubMed]
  • Griffith J, Bleyman M, Rauch CA, Kitchin PA, Englund PT. Visualization of the bent helix in kinetoplast DNA by electron microscopy. Cell. 1986 Aug 29;46(5):717–724. [PubMed]
  • Zhurkin VB. Sequence-dependent bending of DNA and phasing of nucleosomes. J Biomol Struct Dyn. 1985 Feb;2(4):785–804. [PubMed]
  • Drew HR, Travers AA. DNA bending and its relation to nucleosome positioning. J Mol Biol. 1985 Dec 20;186(4):773–790. [PubMed]
  • Siebenlist U, Hennighausen L, Battey J, Leder P. Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in Burkitt lymphoma. Cell. 1984 Jun;37(2):381–391. [PubMed]
  • Levene SD, Crothers DM. A computer graphics study of sequence-directed bending in DNA. J Biomol Struct Dyn. 1983 Oct;1(2):429–435. [PubMed]
  • Sarma RH. New nomenclature for nucleic acid helix parameters Cambridge, UK, September 14, 1988. J Biomol Struct Dyn. 1988 Dec;6(3):391–395. [PubMed]
  • Ulanovsky LE, Trifonov EN. Estimation of wedge components in curved DNA. Nature. 1987 Apr 16;326(6114):720–722. [PubMed]
  • Koo HS, Crothers DM. Calibration of DNA curvature and a unified description of sequence-directed bending. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1763–1767. [PubMed]
  • Tung CS, Harvey SC. Base sequence, local helix structure, and macroscopic curvature of A-DNA and B-DNA. J Biol Chem. 1986 Mar 15;261(8):3700–3709. [PubMed]
  • Dickerson RE. Base sequence and helix structure variation in B and A DNA. J Mol Biol. 1983 May 25;166(3):419–441. [PubMed]
  • Jernigan RL, Sarai A, Ting KL, Nussinov R. Hydrophobic interactions in the major groove can influence DNA local structure. J Biomol Struct Dyn. 1986 Aug;4(1):41–48. [PubMed]
  • Srinivasan AR, Torres R, Clark W, Olson WK. Base sequence effects in double helical DNA. I. Potential energy estimates of local base morphology. J Biomol Struct Dyn. 1987 Dec;5(3):459–496. [PubMed]
  • Kabsch W, Sander C, Trifonov EN. The ten helical twist angles of B-DNA. Nucleic Acids Res. 1982 Feb 11;10(3):1097–1104. [PMC free article] [PubMed]
  • Chung J, Sinn E, Reed RR, Leder P. Trans-acting elements modulate expression of the human c-myc gene in Burkitt lymphoma cells. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7918–7922. [PubMed]
  • Lipp M, Schilling R, Wiest S, Laux G, Bornkamm GW. Target sequences for cis-acting regulation within the dual promoter of the human c-myc gene. Mol Cell Biol. 1987 Apr;7(4):1393–1400. [PMC free article] [PubMed]
  • Bentley DL, Groudine M. Novel promoter upstream of the human c-myc gene and regulation of c-myc expression in B-cell lymphomas. Mol Cell Biol. 1986 Oct;6(10):3481–3489. [PMC free article] [PubMed]
  • Diekmann S. DNA methylation can enhance or induce DNA curvature. EMBO J. 1987 Dec 20;6(13):4213–4217. [PubMed]
  • Hartley JL, Gregori TJ. Cloning multiple copies of a DNA segment. Gene. 1981 May;13(4):347–353. [PubMed]
  • Tan RK, Harvey SC. A comparison of six DNA bending models. J Biomol Struct Dyn. 1987 Dec;5(3):497–512. [PubMed]
  • Wu HM, Crothers DM. The locus of sequence-directed and protein-induced DNA bending. Nature. 1984 Apr 5;308(5959):509–513. [PubMed]
  • Wu C. The 5' ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature. 1980 Aug 28;286(5776):854–860. [PubMed]
  • Siebenlist U, Bressler P, Kelly K. Two distinct mechanisms of transcriptional control operate on c-myc during differentiation of HL60 cells. Mol Cell Biol. 1988 Feb;8(2):867–874. [PMC free article] [PubMed]
  • Bentley DL, Groudine M. A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature. 1986 Jun 12;321(6071):702–706. [PubMed]
  • Pérez-Ortín JE, Estruch F, Matallana E, Franco L. Sliding-end-labelling. A method to avoid artifacts in nucleosome positioning. FEBS Lett. 1986 Nov 10;208(1):31–33. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press