Search tips
Search criteria 


Logo of ejbiosysbioJournal's HomeManuscript SubmissionSpringerOpen.comRegisterThis article
EURASIP J Bioinform Syst Biol. 2006; 2006(1): 59526.
Published online 2006 October 3. doi:  10.1155/BSB/2006/59526
PMCID: PMC3171319

Stochastic Oscillations in Genetic Regulatory Networks: Application to Microarray Experiments


We analyze the stochastic dynamics of genetic regulatory networks using a system of nonlinear differential equations. The system of An external file that holds a picture, illustration, etc.
Object name is 1687-4153-2006-59526-i1.gif-functions is applied to capture the role of RNA polymerase in the transcription-translation mechanism. Using probabilistic properties of chemical rate equations, we derive a system of stochastic differential equations which are analytically tractable despite the high dimension of the regulatory network. Using stationary solutions of these equations, we explain the apparently paradoxical results of some recent time-course microarray experiments where mRNA transcription levels are found to only weakly correlate with the corresponding transcription rates. Combining analytical and simulation approaches, we determine the set of relationships between the size of the regulatory network, its structural complexity, chemical variability, and spectrum of oscillations. In particular, we show that temporal variability of chemical constituents may decrease while complexity of the network is increasing. This finding provides an insight into the nature of "functional determinism" of such an inherently stochastic system as genetic regulatory network.


  • Bower JM, Bolouri H, editor. Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge, Mass, USA; 2001.
  • Boxler P. A stochastic version of center manifold theory. Probability Theory and Related Fields. 1989;83(4):509–545. doi: 10.1007/BF01845701. [Cross Ref]
  • Bradley R. Basic properties of strong mixing conditions. A survey and some open questions. Probability Surveys. 2005;2:107–144.
  • Bressan A. Tutorial on the Center Manifold Theory. 2003. SISSA, Trieste, Italy,
  • Cai L, Friedman N, Xie XS. Stochastic protein expression in individual cells at the single molecule level. Nature. 2006;440(7082):358–362. doi: 10.1038/nature04599. [PubMed] [Cross Ref]
  • Carr J. Applications of Center Manifold Theory. Springer, New York, NY, USA; 1981.
  • Chen F. Introduction to Plasma Physics and Controlled Fusion. Plenum Press, New York, NY, USA; 1984.
  • Chen T, He HL, Church GM. Modeling gene expression with differential equations. Pacific Symposium on Biocomputing (PSB '99), Mauna Lani, Hawaii, USA, January 1999. pp. 29–40. [PubMed]
  • De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology. 2002;9(1):67–103. doi: 10.1089/10665270252833208. [PubMed] [Cross Ref]
  • Elf J, Ehrenberg M. Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Research. 2003;13(11):2475–2484. doi: 10.1101/gr.1196503. [PubMed] [Cross Ref]
  • García-Martínez J, Aranda A, Pérez-Ortín JE. Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms. Molecular Cell. 2004;15(2):303–313. doi: 10.1016/j.molcel.2004.06.004. [PubMed] [Cross Ref]
  • Gardiner CW. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, New York, NY, USA; 1983.
  • Gillespie D. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry. 1977;81(25):2340–2361. doi: 10.1021/j100540a008. [Cross Ref]
  • Kauffman S, Peterson C, Samuelsson B, Troein C. Random Boolean network models and the yeast transcriptional network. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(25):14796–14799. doi: 10.1073/pnas.2036429100. [PubMed] [Cross Ref]
  • Kim JT, Martinetz T, Polani D. Bioinformatic principles underlying the information content of transcription factor binding sites. Journal of Theoretical Biology. 2003;220(4):529–544. doi: 10.1006/jtbi.2003.3153. [PubMed] [Cross Ref]
  • Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes & Development. 2000;14(20):2551–2569. doi: 10.1101/gad.831000. [PubMed] [Cross Ref]
  • Lewin B. Genes VIII. Prentice-Hall, Upper Saddle River, NJ, USA; 2004.
  • Lewis D. In: Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity. Voit E, editor. Van Nostrand Reinhold, New York, NY, USA; 1991. A qualitative analysis of S-systems: Hopf bifurcation; pp. 304–344.
  • Loeve M. Probability Theory, The University Series in Higher Mathematics. Van Nostrand, New York, NY, USA; 1963.
  • Lorenz EN. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences. 1963;20(2):130–141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. [Cross Ref]
  • Lotka AJ. Elements of Physical Biology. Williams and Wilkins, Baltimore, Md, USA; 1925.
  • Maquat LE. Nonsense-mediated mRNA decay in mammals. Journal of Cell Science. 2005;118(9):1773–1776. doi: 10.1242/jcs.01701. [PubMed] [Cross Ref]
  • McAdams HH, Arkin A. Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(3):814–819. doi: 10.1073/pnas.94.3.814. [PubMed] [Cross Ref]
  • McAdams HH, Arkin A. It's a noisy business! Genetic regulation at the nanomolar scale. Trends in Genetics. 1999;15(2):65–69. doi: 10.1016/S0168-9525(98)01659-X. [PubMed] [Cross Ref]
  • Newman M. The structure and function of complex networks. SIAM Review. 2003;45(2):167–256. doi: 10.1137/S003614450342480. [Cross Ref]
  • Parr RG, Yang W. Density Functional Theory of Atoms and Molecules. Oxford University Press, New York, NY, USA; 1989.
  • Perko L. Differential Equations and Dynamical Systems. 3. Springer, New York, NY, USA; 2001.
  • Peytavi R, Raymond FR, Gagné D. et al. Microfluidic device for rapid (An external file that holds a picture, illustration, etc.
Object name is 1687-4153-2006-59526-i2.gif min) automated microarray hybridization. Clinical Chemistry. 2005;51(10):1836–1844. doi: 10.1373/clinchem.2005.052845. [PubMed] [Cross Ref]
  • Ptashne M. Regulated recruitment and cooperativity in the design of biological regulatory systems. Philosophical Transactions of the Royal Society A. 2003;361(1807):1223–1234. doi: 10.1098/rsta.2003.1195. [PubMed] [Cross Ref]
  • Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB. Gene regulation at the single-cell level. Science. 2005;307(5717):1962–1965. doi: 10.1126/science.1106914. [PubMed] [Cross Ref]
  • Savageau M, Voit E. Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Mathematical Biosciences. 1987;87:83–115. doi: 10.1016/0025-5564(87)90035-6. [Cross Ref]
  • Sorribas A, Savageau MA. Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways. Mathematical Biosciences. 1989;94(2):239–269. doi: 10.1016/0025-5564(89)90066-7. [PubMed] [Cross Ref]
  • Voit E, editor. Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity. Van Norstand Reinhold, New York, NY, USA; 1991.
  • Wang W, Cherry JM, Botstein D, Li H. A systematic approach to reconstructing transcription networks in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(26):16893–16898. doi: 10.1073/pnas.252638199. [PubMed] [Cross Ref]
  • Wang R, Jing Z, Chen L. Modelling periodic oscillation in gene regulatory networks by cyclic feedback systems. Bulletin of Mathematical Biology. 2005;67(2):339–367. doi: 10.1016/j.bulm.2004.07.005. [PubMed] [Cross Ref]
  • Wuensche A. Genomic regulation modeled as a network with basins of attraction. Pacific Symposium on Biocomputing (PSB '98), Maui, Hawaii, USA, January 1998. pp. 89–102. [PubMed]
  • Zhang D, Gyorgyi L, Peltier WR. Deterministic chaos in the Belousov-Zhabotinsky reaction: experiments and simulations. Chaos. 1993;3(4):723–745. doi: 10.1063/1.165933. [PubMed] [Cross Ref]
  • Zumdahl S. Chemical Principles. Houghton Mifflin, New York, NY, USA; 2005.

Articles from EURASIP Journal on Bioinformatics and Systems Biology are provided here courtesy of BioMed Central