Search tips
Search criteria 


Logo of nihpaAbout Author manuscriptsSubmit a manuscriptHHS Public Access; Author Manuscript; Accepted for publication in peer reviewed journal;
Mol Genet Metab. Author manuscript; available in PMC 2011 July 13.
Published in final edited form as:
PMCID: PMC3134795


Robert C. Griggs, MD, Mark Batshaw, MD, Mary Dunkle, Rashmi Gopal-Srivastava, PhD, Edward Kaye, MD, Jeffrey Krischer, PhD, Tan Nguyen, MD, PhD, Kathleen Paulus, CIP, and Peter A. Merkel, MD, MPH, for The Rare Diseases Clinical Research Network


The clinical presentation, natural history, pathophysiology, and often mysterious nature of rare diseases have fascinated physicians for centuries. Rare diseases provide opportunities to study human physiology and biomedical science from unique perspectives. Major scientific breakthroughs resulting from investigation of rare diseases have often provided insight into more common disorders. The satisfaction of diagnosing a patient with a rare disorder successfully is often rapidly countered by the realization that the ability to understand and treat the patient’s condition is limited by ignorance and the difficulties of studying the disease. Moreover, for the “interesting” patient with a rare disease, being a “fascinoma” to physicians may intensify suffering. Patients may feel that their physicians are in league with the “interesting” disease. Furthermore, for patients with a rare disorder, the disease is no longer rare --- it is a constant part their lives and the life of their families.

There are several definitions of “rare” or “orphan” diseases and these definitions may differ among countries. Common to all definitions is the low prevalence of a disease and the perception that treatments and research related to a specific disease are inadequate. In 1983 the United States (U.S.) Congress passed the “Orphan Drug Act” (since amended several times). This landmark act instructs the U.S. Food and Drug Administration to label a disease as “rare” if it has a prevalence of <200,000 persons in the U.S. Using this definition, it is estimated that over 7000 rare diseases affect an estimated 25-30 million people with a rare disease in the U.S. (8-12% of population). The Orphan Drug Act also designates diseases as “rare” if they affect more than 200,000 persons in the U.S. if “…there is no reasonable expectation that the cost of developing and making available in the U.S. a drug for such disease or condition will be recovered from sales in the U.S. of such drug.” [1]

The awareness of rare diseases by the general public has grown over the last three decades. This increased awareness is the result of changes in society including: the marked expansion in the size, number, and influence of patient advocacy groups focused on a specific rare disease; groups promoting awareness of rare diseases in general (e.g. the National Organization for Rare Disorders [2]; the ability of the internet to allow patient groups to organize and educate and reach millions of people world-wide inexpensively; the growing interest by mainstream media in human interest stories about people, especially celebrities, with rare diseases; increased government attention to, and funding of, rare disease research and targeted drug development; and academic medical institutions’ support of specialized centers organized to treat patients with rare diseases and conduct research on these disorders. This paper reviews important issues facing clinical investigators studying or training to study rare diseases.

Pursuing a Career in Rare Disease Research

Once interested and engaged in research into a rare disease, an investigator faces a number of opportunities and challenges. The scientific and career opportunities for researchers specializing in rare diseases are excellent. Unanswered questions about the pathophysiology of many rare diseases have the potential to make possible a major impact on a clinically and scientifically underserved population. The advances and availability of powerful tools for studying genetics has been of particular benefit to students of rare diseases. The internet has been a key and expanding method for recruiting clinical study subjects and publicizing the services of new centers for care and research in specific diseases. In addition, funding agencies in many countries now recognize the benefit for the general scientific community of supporting research in rare diseases. Many patient advocacy groups now provide support for young investigators focusing on specific rare disorders. Investigators can quickly carve out their own research niche when studying a rare disease.

Clinical investigators in rare disease research also regularly face challenges specific to the study of uncommon disorders. Perhaps the most frequent problem is the recruitment of a requisite number of study subjects for an observational cohort or a clinical trial. This need requires the creation of multi-institutional and international collaborations to conduct clinical investigation in rare diseases. These recruitment challenges and reduced study sample sizes also directly lead to the need for adoption of specialized study designs and biostatistical techniques developed to maximize data from small numbers of subjects. Additionally, studying rare diseases requires greater vigilance in protecting the privacy of study subjects as the publication of family pedigree information or detailed clinical descriptions can lead to identification of a specific individual. Successfully obtaining adequate research funding by government agencies and stimulating the interest of biopharmaceutical industry partners are greater problems for researchers involved in rare diseases as more common diseases have greater economic impact. Thus, trainees in rare disease research need to seek out mentors with a different subset of skills from those for individuals engaged in research in common disorders.

Orphan-Drug Designation Program

The Orphan Drug Act (Public Law 97-414) was enacted in 1983 to provide sponsors incentives to develop promising drugs to treat, prevent, or diagnose rare diseases or conditions affecting less than 200,000 persons in the United States (US). These incentives include: protocol assistance (written recommendations from the US Food and Drug Administration (FDA) on the preclinical and clinical studies necessary for marketing approval); tax credits equal to 50 percent of the qualified clinical testing expenses; waiver of Prescription Drug User Fee Act marketing application fee; orphan product development grants; and, most importantly, seven-year marketing exclusivity once the drug is approved by FDA [3]. Drugs intended for common diseases are also eligible for the same incentives if the sponsors can show that no reasonable expectation of recoverable profit occurring from sales in the U.S. in the first seven years of marketing.

To be eligible for these incentives, a sponsor must submit to the Office of Orphan Product Development (OOPD) an orphan-drug designation request prior to the submission of a marketing application of the drug for the intended orphan use. The request should contain information on the disease and its prevalence, the drug and its rationale for use, and estimates and justifications of non-recovery of cost, if applicable.

A previously unapproved drug, a new orphan indication of a previously approved drug, or the same drug as a previously approved drug, but potentially clinically superior, are eligible for designation. A drug may also be designated for use in an “orphan” subset of a common disease, if the sponsor can present a medically plausible rationale why the drug could be used in only that particular subset and not in the remaining patients. The sponsor should refer to the FDA Orphan Drug Regulations for more information on orphan designation [4].

The FDA OOPD has granted 1705 (71%) of the 2394 designation requests received between 1983 and 2006. To date, over 300 designated orphan products have been approved for marketing, serving over 12 million Americans and numerous patients in other countries. In the decade preceding the passage of the Orphan Drug Act, only ten drugs were approved for orphan indications. From 1996 to 2006, the average number of FDA orphan drug approvals per year was 16 (range 6 to 25). Over the last decade, drugs with orphan indications accounted for 0.7% of all original new drug approvals and supplemental applications combined, 11% of original new drug approvals alone, and 24% of all new molecular and biological entity approvals. Over the same period, the number of FDA orphan drug designations per year increased 143% [5]. Updated cumulative lists of designated and approved orphan drugs are available on the OOPD Website [6].

Humanitarian Use Device Designation Program

The Safe Medical Devices Act of 1990 (Public Law 101-629) authorizes the FDA to exempt makers of medical devices developed for the diagnosis or treatment of diseases or conditions affecting a relatively small number of people in the US from the requirements to show effectiveness prior to marketing approval. This provision is also known as the humanitarian device exemption (HDE). As a prerequisite to HDE approval, the sponsor must submit to OOPD a request for humanitarian use device (HUD) designation of the device in question at the earliest possible time [7]. The request should contain an adequate description of the device and a demonstration that the disease or condition (or a subset thereof) of interest affects or is manifested in fewer than 4,000 persons in the US per year. The FDA may approve a designated humanitarian use device through the exemption marketing application if the sponsor can show that: 1) the benefit outweighs the risk from its use; 2) no comparable approved device is available on the market; 3) the device is to be used with institutional review board approval; and 4) the device is sold at cost.

Between 1996 and 2006, OOPD received 174 HUD designation requests of which 117 (67%) were granted. A total of 42 medical devices were eventually approved for marketing under HDE in that time.

Orphan Product Development Grants

The aim of the orphan product development (OPD) grant program is to assist sponsors in defraying the costs of clinical trial expenses incurred in the development of drugs, medical devices, and medical foods for rare diseases and conditions [8]. The program has an annual budget of approximately $14 million. Domestic or foreign, public or private, nonprofit or for-profit entities (excluding those engaging in lobbying activities), state and local units of government, and non-HHS federal agencies may apply. To be eligible, the clinical investigation of the drug or the device must be conducted under an active investigational new drug application or investigational device exemption, respectively.

Applicants may apply for OPD grants electronically via Beginning in fiscal year 2009, funding levels for these grants will be up to $200,000 per year for up to three years for Phase 1 clinical investigation and up to $400,000 per year for up to four years for Phase 2 or 3 clinical investigation.

Between 2000 and 2006, OOPD received an average of 69 grant applications annually. Of these, about 17 were funded each year. The majority of grantees (76%) were affiliated with universities and medical centers. Approximately 19% of grants were awarded to pharmaceutical companies. A quarter (24%) of grants were for oncologic drugs, 14% for metabolic disorders, and less than 10% for each of a number of other disease categories. To date, OPD grants have supported clinical development of 41 approved orphan drugs and medical devices.

Academic Partnerships with Industry for Orphan Diseases

Probably the first question an academician interested in orphan disease should ask before dealing with a biotechnology or pharmaceutical company is “why should a biopharmaceutical company be interested in a rare disease?” The answer relates to some of the history of orphan diseases. The Orphan Drug Act gave financial incentives for companies to consider working in the rare disease field. There was also the incentive of ‘less competition’ and the more likely probability to demonstrate ‘proof of concept’ in these rare disease populations. One of the first corporations to utilize this new ‘Orphan Disease Legislation’ was Genzyme Corporation who in 1991 successfully registered alglucerase (Ceredase) for the treatment of Gaucher disease. The initial drug development was performed at the NIH .

Academic-industrial relationships provide a synergy of activity that cannot be obtained if each component works in isolation. Academic groups provide the intellectual catalyst that is required for an industrial partner to feel confident enough to expend the capital to further the development of a new drug product. Industry brings the rigor and resources to confirm initial findings and provide the resources required for manufacturing and toxicological studies. The final clinical trials are rigorous and expensive and usually require a partnership with a pharmaceutical entity before completion. It is essential that each party understands its responsibilities and strengths of both parties before a successful ‘partnership’ can begin. A well demarcated ‘pre-nuptual’ agreement is necessary so that each party understands the benefits and risks of the partnership. Disagreements can be significantly reduced if the early ‘groundwork’ can be established. It is critical to understand that both the academic and pharmaceutical partner brings invaluable assets to any agreement.

Working with Patient Advocacy Groups for Rare Diseases

Patients with rare diseases often form advocacy groups as a way of sharing information and encouragement, supporting research, and helping patients and their families obtain needed services. These groups have played an important role in the history of the orphan product movement and they continue to provide substantial support to rare disease researchers today. Patient advocacy groups often help with patient recruitment, research funding, administration of patient assistance programs, and facilitation of patient-doctor communication. For example, the National Organization for Rare Disorders (NORD) —which is a federation of patient advocacy groups—provides assistance with patient recruitment, including “Clinical Broadcasts” that notify patients and family members of opportunities to participate in clinical trials. NORD also administers grants and fellowships for the study of rare diseases, and early access programs for investigational drugs.

Many patient advocacy groups have developed sophisticated and highly effective fundraising techniques to support the study of rare diseases. For example, when researchers at the University of Pennsylvania announced in 2006 that they had identified the gene associated with fibrodysplasia ossificans progressiva (FOP), they credited the International FOP Association with providing major funding for their work [9]. Several patient advocacy groups have also assisted academic researchers in the creation and maintenance of tissue banks and patient registries.

A growing spirit of internationalism among patient advocacy groups may also be helpful to researchers. Organizations within the U.S. work closely with their counterparts in Europe, Asia, and elsewhere. In the world of rare diseases, where the number of patients in any one locale may be quite small, such international linkages can be extremely beneficial.

Clinical Trial Design

Trial designs for rare diseases must meet the same rigorous standards as those for trials for more prevalent diseases.[11] They must ask important scientific questions, minimize bias and have appropriate likelihood of achieving a scientifically acceptable answer. Indeed, designs for rare diseases are equally applicable to any other category of diseases. However, many different types of study designs exist, some of which require only a fraction of the number of subjects required to conduct a randomized controlled trial. which might make them particularly attractive for studies of rare diseases. [12-16]

A randomized controlled trial is considered the gold standard because inherent in its design is the minimization of bias. Thus the results are often regarded as providing the strongest evidence in testing a hypothesis. However, randomized controlled trials are not easy to do in that many potential participants object to the concept of randomization and investigators may sometimes feel that randomization, in of it itself, is unethical. [17] Randomization requires that the investigator and the subject consider themselves in the state of equipoise in that they truly feel that the treatment received from either arm of randomized trial is equivalent unless proven otherwise. This is difficult for participants who want to believe that their treatment will be based upon what is best for them and not the ‘flip of a coin’ and difficult for physicians who also think that they are ethically bound to provide the ‘best’ treatment. Equipoise is made the more difficult as trials are often developed because an investigator feels that an experimental therapy is better and they wish to test that hypothesis in a rigorous fashion. Some subjects object to the trials if they have a likelihood of being assigned a potentially inferior arm (i.e. the non-experimental therapy) or being randomized to a placebo. Appropriate patient education by investigators intimately aware of the specific rare disease often diffuses their concerns.

Alternate designs can address concerns about randomized controlled trials by using external or historical controls or with participants serving as their own control.[18] In the case of external or historical controls, all patients recruited for a proposed study receive the new or experimental therapy and their outcomes are compared to a population that had already been treated by a standard therapy. If historical data are valid and available, this is an efficient design because it requires fewer patients to be accrued. The downside of such a design is that the selection of historical controls must be made with extreme caution so as not to bias the study results. Often it is difficult to know whether bias has been introduced by factors that have not been reported in the historical series or through changes in practice that may affect clinical assessments or outcomes.

A design that avoids the biases of historical controls is the use of concurrent controls for which participants serve as their own control. Such designs are desirable if there is less within-patient variability in a treatment response than there is between-patient variability. In such cases, outcome estimates will have less variance and the study design will require less accrual. Examples of these designs include cross-over designs (Table 1) and “N-of-1” designs (Table 2). [19-21] These study designs are applicable, however, only in the situation where there is a relatively rapid response to the intervention, the response disappears relatively soon after the intervention is withdrawn, and the participant’s overall condition does not change during the intervention or post-intervention periods. These designs can work well for chronic diseases, but in many settings these assumptions can not be justified.

Table 1
Cross-Over Trials for Rare Diseases
Table 2
“N-of-1” Trials for Rare Diseases

The case-control design is well-suited to study rare events and rare diseases. [22] In this design, individuals in whom a certain outcome has been observed (e.g. specific level of disease severity or a particular event) are matched to controls that did not have such an outcome and then the two groups are compared with respect to a particular intervention or exposure. Case-controlled studies can utilize either prospectively or retrospectively collected data. Case-control studies are particularly efficient but suffer because of the reliance on historical data. Such designs can be particularly useful in rare diseases in which there is a long lag time between genotype and phenotypic expression or between exposure and the particular events or outcomes of interest. When conducting case-controlled studies, investigators have to be extremely careful in selecting appropriate controls to avoid introducing bias. This design is not ranked as high as the randomized controlled trial in terms of the strength of evidence.

Different designs can be used even when treatment arms are prospectively randomized to reduce sample size requirements. Examples include cross-over designs as well as factorial designs [23]. In the former, participants are randomized to a treatment arm for a period at the end of which the outcome is assessed and then ‘crossed over’ to the other treatment. The cross-over design makes the same assumptions as does ‘N-of-1’ trials where participants are randomized to pairs of therapies given in random sequence and a washout period is assumed to eliminate the effect of the treatment after the intervention is withdrawn. Factorial designs involve a double randomization in which two questions are asked in the same participant population. This essentially results in a sample size savings of an appropriate 50%, but also assumes no interaction between the two treatments. By interaction we mean that the effect of treatment A over its comparison group (placebo) is in the same direction regardless of whether the patient received treatment B or not. Again, this is an assumption that is hard to verify.

Finally, designs for ranking and selection procedures are often helpful and generally require a smaller sample size than randomized controlled trials [24]. In a ranking design, the objective is to maximize the likelihood of selecting the better therapy from a number of therapies as opposed to designing a trial that actually compares therapies directly and measures how much better one is as compared to another. Subjects are prospectively randomized to different treatment arms and response rates measured as in a randomized clinical trial. Instead of direct comparisons, the results are ranked in terms of the desired outcome. Ranking statistics are often used when information about underlying parametric distributions are unknown. It could be argued that less is learned in such an experimental design and a subsequent experiment is required to measure the actual difference between treatment outcomes. That is because a randomized clinical trial design is to detect a minimal clinical significance between treatments whereas the ranking statistics only seeks to determine which treatment has the better outcome. Because fewer subjects are necessary to establish the superior treatment, this design is suitable for evaluating multiple treatments

In some instances the arguments against randomized controlled trials are convincing exclusive of the difficulty of recruiting a sufficient number of subjects. For a disease in which the natural history is one of invariably relentless progression and death, the improvement and survival of a relatively small number of subjects is persuasive evidence of efficacy and is sufficient for regulatory approval. Similarly, a major benefit of a treatment vs. placebo in a small number of n of 1 trials with repeated, confirmatory observations in each subject gives definitive information for individual cases. In both instances two major limitations are noted: (1) It is uncertain what proportion of patients will benefit from treatment, and (2) there are insufficient data on adverse effects of treatment are generated.

The design of a clinical trial for evaluating an experimental treatment for a rare disease may follow many approaches: a number of them can achieve certain economies in terms of the required number of participants. However, the options are not without their drawbacks and require investigators to make a number of assumptions, some of which cannot be verified. It is clear that careful consideration needs to be made regarding those assumptions to identify the study design that best fits the research question. [25-27]

IRB and HIPAA Issues Regarding Research in Rare Diseases

Navigating the requirements of domestic Institutional Review Boards (IRB’s), international ethics boards, and the U.S. Health Insurance Portability and Accountability Act (HIPAA) regulations are daunting for both new and experienced investigators in rare disease as the complexity of adherence to HIPAA regulations is amplified when conducting clinical trials in rare diseases. An understanding of the fundamentals of human subjects protection, regulations relevant to clinical research, and the role of government agencies (e.g., the Office for Human Research Protections, the Food and Drug Administration, and the Office of Civil Rights) is a critical foundation for efficient, high-quality, and ethical research, in rare diseases.

Maintaining the anonymity of participants is a particular challenge for rare disease research due to inherently smaller affected populations, yet is germane as those afflicted with rare diseases and their families can be more vulnerable to discrimination (e.g. insurability, employability, etc). Some strategies to protect the anonymity of research participants and their families include: physical controls (limited and centralized access to data), restricted use and disclosure of protected health information (PHI), and employment of Certificates of Confidentiality. Certificates of Confidentiality are issued by the National Institutes of Health (NIH) to protect identifiable research information from forced disclosure. They allow the investigator and others who have access to research records to refuse to disclose identifying information on research participants in any civil, criminal, administrative, legislative, or other proceeding, whether at the federal, state, or local level. [10]

Research registries are an important part of conducting rare diseases research. However, access to and utilization of the information collected by registries includes complicated ethical and privacy issues. The utilization of a central data coordination center can lower IRB and HIPAA hurdles by providing standardized controls for what data are collected, who/what entities have access to data, and specifications for how/by whom registrants can be contacted.

Solution-based discussions on human subjects issues specific to rare diseases research also require special attention. These include: strengthening investigator relationships with patient advocacy groups and successfully navigating local IRB review of multi-center studies by volunteering/providing much needed expertise in rare disease areas.

Research Training for Rare Disease Research

Research training strategies, including curricula and mentoring requirements for clinical investigators in rare diseases do not necessarily differ from those employed for other clinical research. However, the absolute requirement that training prepares the investigator for the challenging task of supporting a research program mandates distinct considerations for rare disease research (Table 3). It could be argued that those interested in a rare disease should consider the option of studying both a common as well as a rare disease in order to cross-subsidize their focus on a rare disease.

Table 3
Skill Sets Essential for Research on Rare Diseases

The curriculum for research training includes biostatistics and epidemiology and can often occur within a masters program in clinical and translational research or public health. The bedrock of training is the mentoring team: a single mentor who is a role model, well-funded for rare disease research and has demonstrated mentoring success; a biostatistician with time and interest in the trainee’s focus; and a basic scientist interested in the trainee’s specific disease focus. An essential quality common to all ideal mentors is generosity (Table 4). The selection of the right mentor is essential for all trainees --- basic or clinical. For rare disease research training, this means working with a mentor who has learned the research strategies essential to pursue study of a rare disease, including garnering support.

Table 4
Assessing the Generosity of Mentors

Training strategies for clinical scientists are different from those for basic scientists (Table 5). For basic scientists a single supervisor/mentor and a single focus are ideal. For clinical/translational training a mentoring team is essential; and it is often important to pursue one or more clinical projects at the same time since some of the highest quality clinical studies are longitudinal --- making it difficult to publish the results within a reasonable period of time from the initial design of a project. Working collaboratively on several longitudinal studies at various stages is often the key to high productivity. Trainees can often have their own individual projects based on data-mining, subset analyses, or ancillary studies based on ongoing or completed longitudinal studies. Rare disease research training ideally occurs in an environment rich in ongoing, well-funded investigators and longitudinal projects.

Table 5
Comparisons/Contrasts: Basic vs Clinical/Translational Research Training

“Protected-time” is the mantra of the academic clinician whose mentors have argued that an excessive service load --- for either revenue support or to help a department meet “clinical mission” --- can interfere with research-skill development and productivity. However, it is critical for the rare disease trainee to gain extensive clinical experience in “their” disease. Moreover, the support of a patient population is needed for clinical research initiatives.

The proliferation of graduate degree-granting programs for clinical research has fostered organized curricula that provide both didactic and mentored, hands-on training in skills needed for a successful career. Formal, practical courses in grant writing are particularly helpful.

Successful training prepares the trainee to secure extramural support and resources to fund an independent research program with the recognition that clinical research is labor- and personnel-intensive. Optimal training includes seeking and receiving government, private foundation, and industry support as well as experience in philanthropic support development. Developing and fostering relationships with patients and advocacy organizations is essential. Finally, funding is inherently cyclical: academic institutions are rarely in a position to provide substantial programmatic maintenance support and funding agencies have lean years. Finding or creating a position which has substantial “reserves” has to be the goal.


The scientific methodology, financial resources, and logistics of clinical research for rare diseases have changed dramatically in the past two decades with these changes resulting in substantially increased understanding of the pathophysiology of these disorders, many new treatments, and direct benefit to patients with many of these diseases. There are many other resources which can be brought to bear on rare disease research (Web Table 1). Although challenges specific to studying rare diseases remain, the opportunities for contributing to exciting scientific discoveries, forging successful research careers, and, most importantly, improving the lives of people with rare diseases have never been better.

Web Table 1
National Resources for Rare Diseases Research


This work was supported in part by:

R13 RR024337 Merkel, Peter A. , Boston University, Boston, MA

U54 NS059065 Griggs, Robert C., University of Rochester, Rochester, NY

U54 RR019497 Merkel, Peter, Boston University, Boston, MA

U54-RR019453 Batshaw, Mark, National Children’s Hospital, Washington, DC

U54-RR019478 Beaudet, Arthur, Baylor College of Medicine, Houston, TX

U54-RR019480 Knowles, Michael, University of North Carolina, Chapel Hill, NC

U54-RR019397 Maciejewski, Jaroslaw, Cleveland Clinic College of Medicine-CWRU, Cleveland, OH

U54-RR019484 New, Maria, Mount Sinai School of Medicine, New York, NY

U54-RR019498 Trapnell, Bruce, Children’s Hospital, Cincinnati, OH

U54-RR019259 Krischer, Jeff, University of South Florida, Tampa, FL

U54-HL077878 Ortel, Thomas, Duke University Medical Center, Durham, NC

U54-DK078377 Sokol, Ronald, Children’s Hospital, Denver, CO


The Rare Diseases Clinical Research Network (RDCRN) Steering Committee includes the following: Barbara Alving, MD, Mark L. Batshaw, MD, Elaine Collier, MD, Robert C. Griggs, MD, Stephen Groft, PharmD, Michael R. Knowles, MD, Peter A. Merkel, MD, MPH, Maria I. New, MD, Thomas L. Ortel, MD, PhD, Alan K. Percy, MD, Ronald J. Sokol, MD, Bruce C. Trapnell, MD, PK Burnette, PhD

National Institutes of Health (Office of Rare Diseases; National Center for Research Resources): Barbara Alving, MD, Elaine Collier, MD, David Eckstein, J. Elizabeth Gretz, PhD, Stephen Groft, PharmD, Rashmi Gopal-Srivastava, PhD

RDCRN Data Technology Coordinating Center: Michael Abbondondolo, Lori Banctel, David Cuthbertson, MS, Christina Foster, Joseph Gomes, Jeffrey Krischer, PhD, Director, Hye-Sueng Lee, Jennifer Lloyd, Kathleen Paulus, Jennifer Pilger, Rachel Richesson, PhD, Kenneth G. Young, II

Patient Advocacy Groups: Alagille Syndrome Alliance, Alpha-1 Foundation, APS Foundation of America, Congenital Adrenal Hyperplasia Research Education and Support, National Organization of Rare Disorders, National Urea Cycle Disorders Foundation, PNH Research and Support, Prader-Willi Syndrome Association, Primary Ciliary Dyskinesia Foundation, Vasculitis Foundation

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Contributor Information

Robert C. Griggs, Department of Neurology, 1351 Mt. Hope Avenue, Suite 203, Rochester, New York 14620, 585 275-6072, 585 276-2056 (fax), ude.retsehcor.cmru@sggirg_treboR.

Mark Batshaw, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010-2970.

Mary Dunkle, National Organization for Rare Disorders (NORD), PO Box 1968, 55 Kenosia Avenue, Danbury, CT 06813-1968.

Rashmi Gopal-Srivastava, Office of Rare Diseases, National Institutes of Health, 6100 Executive Boulevard, Room 3B01, Bethesda, MD.

Edward Kaye, Genzyme Corporation, 500 Kendall Street, Canbridge, MA 02142-1108.

Jeffrey Krischer, Data Technology Coordination Office, University of South Florida, 3650 Spectrum Boulevard, Suite 100, Tampa, FL 33612.

Tan Nguyen, Office of In Vitro Diagnostics, Food and Drug Administration Parklawn Building, Room 6A55, HF-35, 5600 Fishers Lane, Rockville, MD 20857.

Kathleen Paulus, Data Technology Coordination Office, University of South Florida, 3650 Spectrum Boulevard, Suite 100, Tampa, FL 33612.

Peter A. Merkel, Section of Rheumatology and the Clinical Epidemiology Unit, Director, Vasculitis Center, E5, Boston University School of Medicine, 715 Albany Street,Boston, MA 02118.


[1] Orphan Drug Act. Pub. L. No 97-414, 96 Stat. 2049 (1984 as amended)
[3] The tax provisions are administered by the Internal Revenue Service (see Title 26, Code of Federal Regulations, Section 45C) – Dr. Nguyen – OK?
[4] See Title 21, Code of Federal Regulations, Part 316
[5] Mitsumoto J, Dorsey ER, Thompson J, Griggs RC. Impact of the Orphan Drug Act on Drug Development. Presented at the Conference on Clinical Research for Rare Diseases; Bethesda, MD. September 5, 2007.
[7] See Title 21, Code of Federal Regulations, Parts 20 and 814
[9] Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, Connor JM, Delai P, Glaser DL, LeMerrer M, Morhart R, Rogers JG, Smith R, Triffitt JT, Urtizberea JA, Zasloff M, Brown MA, Kaplan FS. A recurrent mutation in the BMT type 1 receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nature Genetics. 2006;38(5):525–7. [PubMed]
[11] Appel LJ. A Premier on the Design, Conduct, and Interpretation of Clinical Trials. Clin J Am Soc Nephrol. 2006;1:1360–1367. [PubMed]
[12] Wilcken B. Rare Diseases and the Assessment of Intervention: What sorts of Clinical Trials can we use? J Inherit Metab Dis. 2001;24:291–298. [PubMed]
[13] Edwards SJ, Lilford RJ, Braunholtz D, Jackson J. Why Underpowered Trials are not Necessarily Unethical. Lancet. 1997;350:804–847. [PubMed]
[14] Griffiths M. Underpowered Trials. Lancet. 1987;350:1406–1407. [PubMed]
[15] Lilford RJ, Thornton JG, Braunholtz D. Clinical Trials and Rare Diseases: A Way out of the Conundrum. Br. Med. J. 1995;311:1621–1625. [PMC free article] [PubMed]
[16] Pocock SJ, Elbourne DR. Randomized Trials or Observational Tribulations? N. Eng. J. Med. 2000;342:1907–1909. [PubMed]
[17] Emanuel EJ, Miller FG. The Ethics of Placebo-controlled Trials: A Middle Ground. N. Eng. J. Med. 2001;345:915–919. 2001. [PubMed]
[18] Sacks H, Chalmers TC, Smith H., Jr Randomized Versus Historical Controls for Clinical Trials. Am. J. Med. 1982;72:233–240. [PubMed]
[19] Bailar JC III, Mosteller F, editors. Medical Uses of Statistics. 2nd Ed NEJM Books; Waltham, Mass.: 1992.
[20] Guyatt G, Sackett D, Taylor W, Chong J, Roberts R, Pugsley S. Determining Optimal Therapy – Randomized Trials in Individual Patients. N. Eng. J. Med. 1986;314:889–892. [PubMed]
[21] Reitberg DP, Weiss SL, Rio E. Advances in Single-Patient Trials for Drug Treatment Optimization and Risk Management. Drug Info J. 2005;39:119–124.Zelen M. Play the Winner Rule and the Controlled Clinical Trial. J Am Stat Assoc. 1969;64:131–146.
[22] Armenian Haroutune K., editor. Applications of the Case-Control Method. Epidemioogic Reviews. 1994;16:1–124. [PubMed]
[23] Fleiss JL. Design and Analysis of Clinical Experiments. John Wiley and Sons; New York: 1986.
[24] Simon Wittes. Ellenberg Randomized Phase II Clinical Trials. Cancer Treatment Reports. 1985;69:1375–1381. [PubMed]
[25] Venance SL, Herr BE, Griggs RC. Challenges in the Design and Conduct of Therapeutic Trials in Channel Disorders. Am. S. Exper. NeuroTherap. 2007;4:199–2004. [PubMed]
[26] Evans CH, Jr., Ildstad ST. Small Clinical Trials: Issues and Challenges. National Academy Press; Washington, DC: 2001.
[27] Lagakos SW. Clinical Trials and Rare Diseases. N. Eng. J. Med. 2003;348:2455–2456. [PubMed]