PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bioinfoLink to Publisher's site
 
Bioinformatics. 2011 July 1; 27(13): i111–i119.
Published online 2011 June 14. doi:  10.1093/bioinformatics/btr214
PMCID: PMC3117364

Discovering and visualizing indirect associations between biomedical concepts

Abstract

Motivation: Discovering useful associations between biomedical concepts has been one of the main goals in biomedical text-mining, and understanding their biomedical contexts is crucial in the discovery process. Hence, we need a text-mining system that helps users explore various types of (possibly hidden) associations in an easy and comprehensible manner.

Results: This article describes FACTA+, a real-time text-mining system for finding and visualizing indirect associations between biomedical concepts from MEDLINE abstracts. The system can be used as a text search engine like PubMed with additional features to help users discover and visualize indirect associations between important biomedical concepts such as genes, diseases and chemical compounds. FACTA+ inherits all functionality from its predecessor, FACTA, and extends it by incorporating three new features: (i) detecting biomolecular events in text using a machine learning model, (ii) discovering hidden associations using co-occurrence statistics between concepts, and (iii) visualizing associations to improve the interpretability of the output. To the best of our knowledge, FACTA+ is the first real-time web application that offers the functionality of finding concepts involving biomolecular events and visualizing indirect associations of concepts with both their categories and importance.

Availability: FACTA+ is available as a web application at http://refine1-nactem.mc.man.ac.uk/facta/, and its visualizer is available at http://refine1-nactem.mc.man.ac.uk/facta-visualizer/.

Contact: tsuruoka/at/jaist.ac.jp


Articles from Bioinformatics are provided here courtesy of Oxford University Press