Search tips
Search criteria 


Logo of narLink to Publisher's site
Nucleic Acids Res. 1986 July 11; 14(13): 5145–5158.
PMCID: PMC311531

Regular distribution of length heterogeneities within non-transcribed spacer regions of cloned and genomic rDNA of Saccharomyces cerevisiae.


A length difference of about 50 bp in the EcoRI fragment B of the rDNA from two different strains of Saccharomyces cerevisiae has been mapped in detail by sequencing of cloned fragments. This 2.4 kb EcoRI fragment contains the start of the 35S rRNA gene at one end and the 5S rRNA gene in the middle flanked by non-transcribed spacers, NTS1 and NTS2. The difference appeared as short deletions or insertions in five regularly spaced regions within the 1 kb NTS1, 3' to the 5S rRNA gene. The same regions of heterogeneities were displayed when all available sequence data of the NTS1 were compared. Four of the variable regions are located 160-170 bp apart, indicating that they might represent linker sequences between phased nucleosomes. Two variant clones, differing in the length of one subfragment of NTS1, were isolated for each strain. In both cases these represented the major variants among chromosomal NTS1 as revealed by sequencing of genomic fragments.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Birnstiel ML, Chipchase M, Speirs J. The ribosomal RNA cistrons. Prog Nucleic Acid Res Mol Biol. 1971;11:351–389. [PubMed]
  • Long EO, Dawid IB. Repeated genes in eukaryotes. Annu Rev Biochem. 1980;49:727–764. [PubMed]
  • Fedoroff NV. On spacers. Cell. 1979 Apr;16(4):697–710. [PubMed]
  • Simeone A, La Volpe A, Boncinelli E. Nucleotide sequence of a complete ribosomal spacer of D. melanogaster. Nucleic Acids Res. 1985 Feb 25;13(4):1089–1101. [PMC free article] [PubMed]
  • Kohorn BD, Rae PM. Nontranscribed spacer sequences promote in vitro transcription of Drosophila ribosomal DNA. Nucleic Acids Res. 1982 Nov 11;10(21):6879–6886. [PMC free article] [PubMed]
  • Reeder RH. Enhancers and ribosomal gene spacers. Cell. 1984 Sep;38(2):349–351. [PubMed]
  • Labhart P, Reeder RH. Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevis. Cell. 1984 May;37(1):285–289. [PubMed]
  • De Winter RF, Moss T. Spacer promoters are essential for efficient enhancement of X. laevis ribosomal transcription. Cell. 1986 Jan 31;44(2):313–318. [PubMed]
  • Mroczka DL, Cassidy B, Busch H, Rothblum LI. Characterization of rat ribosomal DNA. The highly repetitive sequences that flank the ribosomal RNA transcription unit are homologous and contain RNA polymerase III transcription initiation sites. J Mol Biol. 1984 Mar 25;174(1):141–162. [PubMed]
  • Yang-Yen HF, Subrahmanyam CS, Cassidy B, Rothblum LI. Characterization of rat ribosomal DNA II. identification of the highly repetitive DNA in the 3' non-transcribed spacer. J Mol Biol. 1985 Aug 5;184(3):389–398. [PubMed]
  • Petes TD. Molecular genetics of yeast. Annu Rev Biochem. 1980;49:845–876. [PubMed]
  • Oyen TB, Saelid G, Skuladottir GV. Study of a haploid yeast strain with an unusually high rDNA content. III. Unequal meiotic segregation of the gamma-DNA fraction. Biochim Biophys Acta. 1978 Aug 23;520(1):88–102. [PubMed]
  • Philippsen P, Kramer RA, Davis RW. Cloning of the yeast ribosomal DNA repeat unit in SstI and HindIII lambda vectors using genetic and physical size selections. J Mol Biol. 1978 Aug 15;123(3):371–386. [PubMed]
  • Aarstad K, Oyen TB. On the distribution of 5s RNA cistrons on the genome of Saccharomyces cerevisiae. FEBS Lett. 1975 Mar 1;51(1):227–231. [PubMed]
  • Kramer RA, Philippsen P, Davis RW. Divergent transcription in the yeast ribosomal RNA coding region as shown by hybridization to separated strands and sequence analysis of cloned DNA. J Mol Biol. 1978 Aug 15;123(3):405–416. [PubMed]
  • Kempers-Veenstra AE, Musters W, Dekker AF, Klootwijk J, Planta RJ. Deletion mapping of the yeast Pol I promoter. Curr Genet. 1985;10(4):253–260. [PubMed]
  • Skryabin KG, Eldarov MA, Larionov VL, Bayev AA, Klootwijk J, de Regt VC, Veldman GM, Planta RJ, Georgiev OI, Hadjiolov AA. Structure and function of the nontranscribed spacer regions of yeast rDNA. Nucleic Acids Res. 1984 Mar 26;12(6):2955–2968. [PMC free article] [PubMed]
  • Elion EA, Warner JR. The major promoter element of rRNA transcription in yeast lies 2 kb upstream. Cell. 1984 Dec;39(3 Pt 2):663–673. [PubMed]
  • Szostak JW, Wu R. Insertion of a genetic marker into the ribosomal DNA of yeast. Plasmid. 1979 Oct;2(4):536–554. [PubMed]
  • Petes TD, Botstein D. Simple Mendelian inheritance of the reiterated ribosomal DNA of yeast. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5091–5095. [PubMed]
  • Petes TD. Meiotic mapping of yeast ribosomal deoxyribonucleic acid on chromosome XII. J Bacteriol. 1979 Apr;138(1):185–192. [PMC free article] [PubMed]
  • Høgset A, Oyen TB. Correlation between suppressed meiotic recombination and the lack of DNA strand-breaks in the rRNA genes of Saccharomyces cerevisiae. Nucleic Acids Res. 1984 Sep 25;12(18):7199–7213. [PMC free article] [PubMed]
  • Szostak JW, Wu R. Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature. 1980 Apr 3;284(5755):426–430. [PubMed]
  • Petes TD. Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell. 1980 Mar;19(3):765–774. [PubMed]
  • Keil RL, Roeder GS. Cis-acting, recombination-stimulating activity in a fragment of the ribosomal DNA of S. cerevisiae. Cell. 1984 Dec;39(2 Pt 1):377–386. [PubMed]
  • Oyen TB, Gabrielsen OS. Non-random distribution of the Ty1 elements within nuclear DNA of Saccharomyces cerevisiae. FEBS Lett. 1983 Sep 19;161(2):201–206. [PubMed]
  • Dretzen G, Bellard M, Sassone-Corsi P, Chambon P. A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Anal Biochem. 1981 Apr;112(2):295–298. [PubMed]
  • Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. [PubMed]
  • Smith DR, Calvo JM. Nucleotide sequence of the E coli gene coding for dihydrofolate reductase. Nucleic Acids Res. 1980 May 24;8(10):2255–2274. [PMC free article] [PubMed]
  • Rubin CM, Schmid CW. Pyrimidine-specific chemical reactions useful for DNA sequencing. Nucleic Acids Res. 1980 Oct 24;8(20):4613–4619. [PMC free article] [PubMed]
  • Isono K. A computer program package for storing and retrieving DNA/RNA and protein sequence data. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):101–112. [PMC free article] [PubMed]
  • Petes TD, Hereford LM, Skryabin KG. Characterization of two types of yeast ribosomal DNA genes. J Bacteriol. 1978 Apr;134(1):295–305. [PMC free article] [PubMed]
  • Valenzuela P, Bell GI, Venegas A, Sewell ET, Masiarz FR, DeGennaro LJ, Weinberg F, Rutter WJ. Ribosomal RNA genes of Saccharomyces cerevisiae. II. Physical map and nucleotide sequence of the 5 S ribosomal RNA gene and adjacent intergenic regions. J Biol Chem. 1977 Nov 25;252(22):8126–8135. [PubMed]
  • Swanson ME, Holland MJ. RNA polymerase I-dependent selective transcription of yeast ribosomal DNA. Identification of a new cellular ribosomal RNA precursor. J Biol Chem. 1983 Mar 10;258(5):3242–3250. [PubMed]
  • Arnott S, Chandrasekaran R, Hall IH, Puigjaner LC. Heteronomous DNA. Nucleic Acids Res. 1983 Jun 25;11(12):4141–4155. [PMC free article] [PubMed]
  • Kunkel GR, Martinson HG. Nucleosomes will not form on double-stranded RNa or over poly(dA).poly(dT) tracts in recombinant DNA. Nucleic Acids Res. 1981 Dec 21;9(24):6869–6888. [PMC free article] [PubMed]
  • Thoma F, Simpson RT. Local protein-DNA interactions may determine nucleosome positions on yeast plasmids. Nature. 1985 May 16;315(6016):250–252. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press