PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. May 1, 2011; 67(Pt 5): o1215.
Published online Apr 29, 2011. doi:  10.1107/S1600536811014619
PMCID: PMC3089142
Ethyl 1-[2-(morpholin-4-yl)eth­yl]-2-[4-(trifluoro­meth­yl)phen­yl]-1H-benzimid­azole-5-carboxyl­ate
Yeong Keng Yoon,a Mohamed Ashraf Ali,a Tan Soo Choon,a Madhukar Hemamalini,b and Hoong-Kun Funb*
aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Correspondence e-mail: hkfun/at/usm.my
Thomson Reuters ResearcherID: A-3561-2009.
Received April 15, 2011; Accepted April 19, 2011.
Abstract
In the title compound, C23H24F3N3O3, the morpholine ring adopts a chair conformation. The benzimidazole ring is approximately planar, with a maximum deviation of 0.028 (1) Å for one of the unsubstituted C atoms. The benzimidazole ring makes dihedral angles of 35.66 (4) and 75.45 (5)° with the attached phenyl and morpholine rings, respectively. In the crystal structure, adjacent mol­ecules are linked via C—H(...)F and C—H(...)O hydrogen bonds to form a two-dimensional network.
Related literature
For background to benzimidazoles, see: Boruah & Skibo (1994 [triangle]); Haugwitz (1982 [triangle]); Hisano (1982 [triangle]); Hubschwerlen (1992 [triangle]); Shi (1996 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).
An external file that holds a picture, illustration, etc.
Object name is e-67-o1215-scheme1.jpg Object name is e-67-o1215-scheme1.jpg
Crystal data
  • C23H24F3N3O3
  • M r = 447.45
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-o1215-efi1.jpg
  • a = 10.1463 (2) Å
  • b = 10.5595 (2) Å
  • c = 11.5775 (2) Å
  • α = 96.868 (1)°
  • β = 109.638 (1)°
  • γ = 110.833 (1)°
  • V = 1050.83 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100 K
  • 0.51 × 0.33 × 0.19 mm
Data collection
  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.945, T max = 0.979
  • 22546 measured reflections
  • 6122 independent reflections
  • 5266 reflections with I > 2σ(I)
  • R int = 0.024
Refinement
  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.106
  • S = 1.03
  • 6122 reflections
  • 290 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.26 e Å−3
Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014619/hb5849sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014619/hb5849Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
YKY, MAA and TSC thank the Universiti Sains Malysia, Penang, for providing research facilities. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.
supplementary crystallographic information
Comment
A wide variety of benzimidazole derivatives have been described for their chemotherapeutic importance (Boruah & Skibo, 1994). The synthesis of novel benzimidazole derivatives remains an important focus in medicinal research. Recent observations suggest that substituted benzimidazoles and heterocyclic, which are the structural isosters of nucleotides owing to their fused heterocyclic nuclei in their structures that allow them to interact easily with the biopolymers, possess potential activity with lower toxicities in the chemotherapeutic approach in man (Haugwitz, 1982; Hisano, 1982). Moreover, these fused heterocylces were distinctively studied for their antitumor, antiviral and antimicrobial activities as new nonnucleoside topoisomerase I poisons, human immunodeficiency virus-1 reverse transcriptase inhibitors and or potent DNA gyrase inhibitors (Hubschwerlen, 1992; Shi, 1996). In addition, benzimidazole derivatives have played a crucial role in the theoretical development of heterocyclic chemistry and are also used extensively in organic synthesis.
The molecular structure of the title compound, (I), is shown in Fig. 1. The benzimidazole (N1–N2/C1–C7) ring is approximately planar with maximum deviation of 0.028 (1) Å for atom C4. The morpholine (N3/O3/C20–C23) ring adopts a chair conformation [Q = 0.5778 (12) Å, θ = 178.81 (12)°, [var phi] = 128 (5)°; Cremer & Pople, 1975]. The central benzimidazole (N1–N2/C1–C7) ring makes dihedral angles of 35.66 (4)° and 75.45 (5)° with the attached phenyl (C8–C13) and the morpholine (N3/O3/C20–C23) rings, respectively.
In the crystal (Fig. 2), adjacent molecules are connected via intermolecular C2—H2A···F1, C10—H10A···O3 and C20—H20A···O2 (Table 1) hydrogen bonds to form a two-dimensional network.
Experimental
Ethlyl-3-amino-4-(morpholinoethylamino) benzoate (0.01 mol) and sodium metabisulfite adduct of trifluromethyl benzaldehyde (0.01 mol) were dissolved in DMF. The reaction mixture was refluxed at 130°C for 4 h. After completion, the reaction mixture was diluted in ethyl acetate (20 ml) and washed with water (20 ml). The organic layer was collected, dried over Na2SO4 and the evaporated in vacuo to yield the product. The product was recrystallised from ethyl acetate to yield colourless blocks of (I).
Refinement
All H atoms were positioned geometrically [C—H = 0.95–0.99 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). A rotating group model was used for the methyl group.
Figures
Fig. 1.
Fig. 1.
The asymmetric unit of (I), showing 30% probability displacement ellipsoids.
Fig. 2.
Fig. 2.
The crystal packing of the title compound (I).
Crystal data
C23H24F3N3O3Z = 2
Mr = 447.45F(000) = 468
Triclinic, P1Dx = 1.414 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1463 (2) ÅCell parameters from 9996 reflections
b = 10.5595 (2) Åθ = 2.4–30.1°
c = 11.5775 (2) ŵ = 0.11 mm1
α = 96.868 (1)°T = 100 K
β = 109.638 (1)°Block, colourless
γ = 110.833 (1)°0.51 × 0.33 × 0.19 mm
V = 1050.83 (3) Å3
Data collection
Bruker SMART APEXII CCD diffractometer6122 independent reflections
Radiation source: fine-focus sealed tube5266 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −14→14
Tmin = 0.945, Tmax = 0.979k = −14→14
22546 measured reflectionsl = −16→15
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0561P)2 + 0.2843P] where P = (Fo2 + 2Fc2)/3
6122 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.26 e Å3
Special details
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
F10.57861 (8)1.42374 (7)0.30620 (7)0.02777 (15)
F20.46917 (8)1.29209 (7)0.11309 (6)0.02950 (16)
F30.71291 (8)1.42604 (7)0.19595 (7)0.02843 (15)
O10.69592 (9)0.47558 (8)0.74341 (7)0.02040 (15)
O20.85918 (10)0.40173 (9)0.69712 (8)0.02932 (18)
O31.19661 (9)0.84859 (9)0.01681 (7)0.02600 (17)
N10.83537 (9)0.85327 (9)0.38581 (8)0.01618 (16)
N20.65751 (9)0.82663 (9)0.46835 (8)0.01700 (16)
N30.98967 (9)0.86116 (8)0.13194 (7)0.01548 (15)
C10.73153 (11)0.74099 (10)0.50627 (9)0.01619 (17)
C20.71070 (11)0.64983 (10)0.58354 (9)0.01726 (18)
H2A0.63430.63590.61670.021*
C30.80658 (11)0.58039 (10)0.60970 (9)0.01745 (18)
C40.92137 (11)0.60204 (10)0.56165 (9)0.01902 (18)
H4A0.98670.55500.58390.023*
C50.94156 (11)0.68952 (10)0.48328 (9)0.01836 (18)
H5A1.01760.70280.44980.022*
C60.84348 (11)0.75739 (10)0.45626 (9)0.01645 (17)
C70.72211 (11)0.89169 (10)0.39757 (9)0.01597 (17)
C80.68579 (11)1.00214 (10)0.34664 (9)0.01626 (17)
C90.69019 (11)1.02693 (10)0.23121 (9)0.01882 (18)
H9A0.71150.96710.17920.023*
C100.66367 (11)1.13828 (11)0.19277 (9)0.01912 (19)
H10A0.66881.15590.11550.023*
C110.62940 (11)1.22431 (10)0.26810 (9)0.01741 (18)
C120.61869 (11)1.19837 (10)0.38023 (9)0.01806 (18)
H12A0.59241.25580.42980.022*
C130.64690 (11)1.08740 (10)0.41914 (9)0.01761 (18)
H13A0.63971.06920.49570.021*
C140.59851 (12)1.34179 (11)0.22216 (10)0.02011 (19)
C150.79184 (12)0.47723 (11)0.68685 (9)0.01946 (19)
C160.67213 (13)0.37082 (11)0.81448 (10)0.0224 (2)
H16A0.77150.38810.88340.027*
H16B0.62900.27520.75730.027*
C170.56154 (14)0.38291 (12)0.86957 (11)0.0266 (2)
H17A0.54120.31200.91640.040*
H17B0.46450.36760.80060.040*
H17C0.60650.47710.92770.040*
C180.94152 (11)0.90747 (10)0.32523 (9)0.01693 (17)
H18A1.04760.92680.38390.020*
H18B0.94160.99720.30830.020*
C190.89489 (11)0.80215 (10)0.20000 (9)0.01663 (17)
H19A0.90590.71630.21820.020*
H19B0.78500.77470.14530.020*
C201.15464 (11)0.90256 (10)0.20837 (9)0.01811 (18)
H20A1.16910.82110.23500.022*
H20B1.19160.97860.28610.022*
C211.24758 (12)0.95334 (12)0.13135 (10)0.0243 (2)
H21A1.23831.03860.10990.029*
H21B1.35790.97940.18350.029*
C221.03751 (13)0.81211 (12)−0.05885 (10)0.0251 (2)
H22A1.00170.7401−0.13900.030*
H22B1.02600.8964−0.08110.030*
C230.93906 (12)0.75531 (11)0.01281 (9)0.02070 (19)
H23A0.82950.7302−0.04110.025*
H23B0.94750.66910.03240.025*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
F10.0374 (4)0.0265 (3)0.0319 (3)0.0204 (3)0.0199 (3)0.0113 (3)
F20.0268 (3)0.0292 (3)0.0280 (3)0.0123 (3)0.0044 (3)0.0108 (3)
F30.0285 (3)0.0250 (3)0.0394 (4)0.0103 (3)0.0210 (3)0.0170 (3)
O10.0242 (4)0.0216 (3)0.0227 (3)0.0115 (3)0.0144 (3)0.0110 (3)
O20.0365 (5)0.0326 (4)0.0379 (4)0.0238 (4)0.0239 (4)0.0197 (4)
O30.0221 (4)0.0328 (4)0.0221 (4)0.0077 (3)0.0141 (3)0.0018 (3)
N10.0163 (4)0.0184 (4)0.0177 (4)0.0081 (3)0.0103 (3)0.0056 (3)
N20.0174 (4)0.0192 (4)0.0174 (4)0.0086 (3)0.0095 (3)0.0057 (3)
N30.0150 (4)0.0176 (4)0.0145 (3)0.0055 (3)0.0083 (3)0.0043 (3)
C10.0162 (4)0.0176 (4)0.0162 (4)0.0076 (3)0.0082 (3)0.0034 (3)
C20.0175 (4)0.0195 (4)0.0176 (4)0.0082 (3)0.0098 (3)0.0056 (3)
C30.0190 (4)0.0182 (4)0.0164 (4)0.0080 (3)0.0085 (3)0.0049 (3)
C40.0198 (4)0.0210 (4)0.0199 (4)0.0109 (4)0.0099 (4)0.0053 (3)
C50.0173 (4)0.0210 (4)0.0202 (4)0.0089 (4)0.0109 (3)0.0050 (3)
C60.0167 (4)0.0170 (4)0.0161 (4)0.0064 (3)0.0085 (3)0.0034 (3)
C70.0159 (4)0.0180 (4)0.0158 (4)0.0074 (3)0.0085 (3)0.0039 (3)
C80.0151 (4)0.0176 (4)0.0170 (4)0.0064 (3)0.0081 (3)0.0046 (3)
C90.0213 (5)0.0213 (4)0.0181 (4)0.0102 (4)0.0116 (4)0.0056 (3)
C100.0198 (4)0.0231 (5)0.0197 (4)0.0098 (4)0.0125 (4)0.0081 (4)
C110.0157 (4)0.0178 (4)0.0197 (4)0.0067 (3)0.0085 (3)0.0061 (3)
C120.0181 (4)0.0206 (4)0.0170 (4)0.0093 (4)0.0081 (3)0.0036 (3)
C130.0182 (4)0.0213 (4)0.0159 (4)0.0091 (4)0.0091 (3)0.0053 (3)
C140.0195 (5)0.0208 (4)0.0223 (4)0.0084 (4)0.0106 (4)0.0075 (4)
C150.0207 (5)0.0205 (4)0.0184 (4)0.0088 (4)0.0090 (4)0.0059 (3)
C160.0252 (5)0.0226 (5)0.0237 (5)0.0107 (4)0.0121 (4)0.0124 (4)
C170.0309 (6)0.0267 (5)0.0272 (5)0.0115 (4)0.0170 (4)0.0111 (4)
C180.0164 (4)0.0181 (4)0.0180 (4)0.0056 (3)0.0110 (3)0.0043 (3)
C190.0153 (4)0.0173 (4)0.0178 (4)0.0049 (3)0.0100 (3)0.0036 (3)
C200.0151 (4)0.0216 (4)0.0170 (4)0.0056 (3)0.0086 (3)0.0040 (3)
C210.0198 (5)0.0266 (5)0.0224 (5)0.0028 (4)0.0131 (4)0.0022 (4)
C220.0242 (5)0.0318 (5)0.0175 (4)0.0080 (4)0.0115 (4)0.0040 (4)
C230.0190 (4)0.0230 (5)0.0165 (4)0.0050 (4)0.0088 (3)0.0011 (3)
Geometric parameters (Å, °)
F1—C141.3384 (12)C9—H9A0.9500
F2—C141.3528 (12)C10—C111.3950 (13)
F3—C141.3407 (12)C10—H10A0.9500
O1—C151.3399 (12)C11—C121.3895 (13)
O1—C161.4561 (12)C11—C141.4975 (14)
O2—C151.2132 (13)C12—C131.3915 (13)
O3—C211.4251 (13)C12—H12A0.9500
O3—C221.4311 (13)C13—H13A0.9500
N1—C61.3815 (12)C16—C171.4986 (15)
N1—C71.3883 (12)C16—H16A0.9900
N1—C181.4646 (12)C16—H16B0.9900
N2—C71.3224 (12)C17—H17A0.9800
N2—C11.3896 (12)C17—H17B0.9800
N3—C191.4610 (12)C17—H17C0.9800
N3—C231.4704 (12)C18—C191.5303 (13)
N3—C201.4722 (12)C18—H18A0.9900
C1—C21.4000 (13)C18—H18B0.9900
C1—C61.4077 (13)C19—H19A0.9900
C2—C31.3922 (13)C19—H19B0.9900
C2—H2A0.9500C20—C211.5139 (13)
C3—C41.4124 (13)C20—H20A0.9900
C3—C151.4878 (13)C20—H20B0.9900
C4—C51.3818 (14)C21—H21A0.9900
C4—H4A0.9500C21—H21B0.9900
C5—C61.3977 (13)C22—C231.5152 (14)
C5—H5A0.9500C22—H22A0.9900
C7—C81.4724 (13)C22—H22B0.9900
C8—C131.4019 (13)C23—H23A0.9900
C8—C91.4042 (13)C23—H23B0.9900
C9—C101.3865 (14)
C15—O1—C16114.83 (8)F2—C14—C11111.39 (8)
C21—O3—C22109.12 (8)O2—C15—O1123.35 (9)
C6—N1—C7106.10 (8)O2—C15—C3123.50 (9)
C6—N1—C18123.21 (8)O1—C15—C3113.15 (8)
C7—N1—C18130.41 (8)O1—C16—C17107.55 (8)
C7—N2—C1105.02 (8)O1—C16—H16A110.2
C19—N3—C23109.01 (7)C17—C16—H16A110.2
C19—N3—C20111.75 (7)O1—C16—H16B110.2
C23—N3—C20108.99 (7)C17—C16—H16B110.2
N2—C1—C2129.84 (9)H16A—C16—H16B108.5
N2—C1—C6109.97 (8)C16—C17—H17A109.5
C2—C1—C6120.18 (9)C16—C17—H17B109.5
C3—C2—C1117.21 (9)H17A—C17—H17B109.5
C3—C2—H2A121.4C16—C17—H17C109.5
C1—C2—H2A121.4H17A—C17—H17C109.5
C2—C3—C4121.52 (9)H17B—C17—H17C109.5
C2—C3—C15122.16 (9)N1—C18—C19111.25 (8)
C4—C3—C15116.30 (9)N1—C18—H18A109.4
C5—C4—C3122.02 (9)C19—C18—H18A109.4
C5—C4—H4A119.0N1—C18—H18B109.4
C3—C4—H4A119.0C19—C18—H18B109.4
C4—C5—C6116.02 (9)H18A—C18—H18B108.0
C4—C5—H5A122.0N3—C19—C18111.69 (7)
C6—C5—H5A122.0N3—C19—H19A109.3
N1—C6—C5131.06 (9)C18—C19—H19A109.3
N1—C6—C1105.89 (8)N3—C19—H19B109.3
C5—C6—C1122.99 (9)C18—C19—H19B109.3
N2—C7—N1113.01 (8)H19A—C19—H19B107.9
N2—C7—C8122.72 (8)N3—C20—C21110.18 (8)
N1—C7—C8124.07 (8)N3—C20—H20A109.6
C13—C8—C9118.97 (9)C21—C20—H20A109.6
C13—C8—C7117.53 (8)N3—C20—H20B109.6
C9—C8—C7123.49 (8)C21—C20—H20B109.6
C10—C9—C8120.37 (9)H20A—C20—H20B108.1
C10—C9—H9A119.8O3—C21—C20111.87 (8)
C8—C9—H9A119.8O3—C21—H21A109.2
C9—C10—C11119.71 (9)C20—C21—H21A109.2
C9—C10—H10A120.1O3—C21—H21B109.2
C11—C10—H10A120.1C20—C21—H21B109.2
C12—C11—C10120.83 (9)H21A—C21—H21B107.9
C12—C11—C14121.00 (9)O3—C22—C23110.72 (8)
C10—C11—C14118.13 (9)O3—C22—H22A109.5
C11—C12—C13119.28 (9)C23—C22—H22A109.5
C11—C12—H12A120.4O3—C22—H22B109.5
C13—C12—H12A120.4C23—C22—H22B109.5
C12—C13—C8120.76 (9)H22A—C22—H22B108.1
C12—C13—H13A119.6N3—C23—C22110.37 (8)
C8—C13—H13A119.6N3—C23—H23A109.6
F1—C14—F3107.03 (8)C22—C23—H23A109.6
F1—C14—F2106.57 (8)N3—C23—H23B109.6
F3—C14—F2106.04 (8)C22—C23—H23B109.6
F1—C14—C11112.96 (8)H23A—C23—H23B108.1
F3—C14—C11112.41 (8)
C7—N2—C1—C2179.25 (10)C9—C10—C11—C14−178.85 (9)
C7—N2—C1—C60.28 (10)C10—C11—C12—C131.81 (15)
N2—C1—C2—C3−177.58 (9)C14—C11—C12—C13179.42 (9)
C6—C1—C2—C31.29 (14)C11—C12—C13—C80.00 (15)
C1—C2—C3—C40.72 (14)C9—C8—C13—C12−2.40 (14)
C1—C2—C3—C15−177.84 (9)C7—C8—C13—C12176.78 (9)
C2—C3—C4—C5−2.01 (15)C12—C11—C14—F17.10 (13)
C15—C3—C4—C5176.62 (9)C10—C11—C14—F1−175.22 (9)
C3—C4—C5—C61.14 (14)C12—C11—C14—F3128.35 (10)
C7—N1—C6—C5−176.49 (10)C10—C11—C14—F3−53.98 (12)
C18—N1—C6—C5−1.98 (16)C12—C11—C14—F2−112.80 (10)
C7—N1—C6—C10.82 (10)C10—C11—C14—F264.87 (12)
C18—N1—C6—C1175.33 (8)C16—O1—C15—O2−2.71 (14)
C4—C5—C6—N1177.86 (9)C16—O1—C15—C3176.96 (8)
C4—C5—C6—C10.94 (14)C2—C3—C15—O2169.88 (10)
N2—C1—C6—N1−0.71 (10)C4—C3—C15—O2−8.74 (15)
C2—C1—C6—N1−179.79 (8)C2—C3—C15—O1−9.78 (13)
N2—C1—C6—C5176.88 (9)C4—C3—C15—O1171.59 (8)
C2—C1—C6—C5−2.20 (14)C15—O1—C16—C17−179.41 (9)
C1—N2—C7—N10.27 (11)C6—N1—C18—C1979.90 (11)
C1—N2—C7—C8−174.75 (8)C7—N1—C18—C19−107.04 (11)
C6—N1—C7—N2−0.71 (11)C23—N3—C19—C18−179.88 (8)
C18—N1—C7—N2−174.67 (9)C20—N3—C19—C1859.59 (10)
C6—N1—C7—C8174.22 (8)N1—C18—C19—N3173.79 (8)
C18—N1—C7—C80.26 (15)C19—N3—C20—C21175.96 (8)
N2—C7—C8—C1331.52 (13)C23—N3—C20—C2155.41 (10)
N1—C7—C8—C13−142.93 (9)C22—O3—C21—C2059.43 (12)
N2—C7—C8—C9−149.33 (10)N3—C20—C21—O3−58.04 (12)
N1—C7—C8—C936.21 (14)C21—O3—C22—C23−59.79 (11)
C13—C8—C9—C103.05 (15)C19—N3—C23—C22−178.76 (8)
C7—C8—C9—C10−176.09 (9)C20—N3—C23—C22−56.55 (11)
C8—C9—C10—C11−1.29 (15)O3—C22—C23—N359.56 (12)
C9—C10—C11—C12−1.17 (15)
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
C2—H2A···F1i0.952.513.4617 (15)175
C10—H10A···O3ii0.952.383.1889 (14)143
C20—H20A···O2iii0.992.523.4878 (14)166
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+2, −z; (iii) −x+2, −y+1, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5849).
  • Boruah, C. R. & Skibo, E. B. (1994). J. Med. Chem. 37, 1625–1631. [PubMed]
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  • Haugwitz, R. D. (1982). J. Med. Chem. 25, 969–974. [PubMed]
  • Hisano, T. (1982). Chem. Pharm. Bull. 30, 2996–3004.
  • Hubschwerlen, C. (1992). J. Med. Chem. 35, 1385–1392. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, D. F. J. (1996). J. Med. Chem. 39, 3375–3384. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of
International Union of Crystallography