Search tips
Search criteria 


Logo of narLink to Publisher's site
Nucleic Acids Res. 1994 January 11; 22(1): 1–10.
PMCID: PMC307737

The DNA (cytosine-5) methyltransferases.


The m5C-MTases form a closely-knit family of enzymes in which common amino acid sequence motifs almost certainly translate into common structural and functional elements. These common elements are located predominantly in a single structural domain that performs the chemistry of the reaction. Sequence-specific DNA recognition is accomplished by a separate domain that contains recognition elements not seen in other structures. This, combined with the novel and unexpected mechanistic feature of trapping a base out of the DNA helix, makes the m5C-MTases an intriguing class of enzymes for further study. The reaction pathway has suddenly become more complicated because of the base-flipping and much remains to be learned about the DNA recognition elements in the family members for which structural information is not yet available.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (3.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Noyer-Weidner M, Trautner TA. Methylation of DNA in prokaryotes. EXS. 1993;64:39–108. [PubMed]
  • Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet. 1991;25:229–253. [PubMed]
  • Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988 Feb;78(2):151–155. [PubMed]
  • Rideout WM, 3rd, Coetzee GA, Olumi AF, Jones PA. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 1990 Sep 14;249(4974):1288–1290. [PubMed]
  • Shen JC, Rideout WM, 3rd, Jones PA. High frequency mutagenesis by a DNA methyltransferase. Cell. 1992 Dec 24;71(7):1073–1080. [PubMed]
  • Oberlé I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, Boué J, Bertheas MF, Mandel JL. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science. 1991 May 24;252(5009):1097–1102. [PubMed]
  • Leonhardt H, Page AW, Weier HU, Bestor TH. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 1992 Nov 27;71(5):865–873. [PubMed]
  • Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992 Jun 12;69(6):915–926. [PubMed]
  • Wu JC, Santi DV. Kinetic and catalytic mechanism of HhaI methyltransferase. J Biol Chem. 1987 Apr 5;262(10):4778–4786. [PubMed]
  • Santi DV, Hardy LW. Catalytic mechanism and inhibition of tRNA (uracil-5-)methyltransferase: evidence for covalent catalysis. Biochemistry. 1987 Dec 29;26(26):8599–8606. [PubMed]
  • Roberts RJ, Myers PA, Morrison A, Murray K. A specific endonuclease from Haemophilus haemolyticus. J Mol Biol. 1976 May 5;103(1):199–208. [PubMed]
  • Klimasauskas S, Nelson JL, Roberts RJ. The sequence specificity domain of cytosine-C5 methylases. Nucleic Acids Res. 1991 Nov 25;19(22):6183–6190. [PMC free article] [PubMed]
  • Caserta M, Zacharias W, Nwankwo D, Wilson GG, Wells RD. Cloning, sequencing, in vivo promoter mapping, and expression in Escherichia coli of the gene for the HhaI methyltransferase. J Biol Chem. 1987 Apr 5;262(10):4770–4777. [PubMed]
  • Kumar S, Cheng X, Pflugrath JW, Roberts RJ. Purification, crystallization, and preliminary X-ray diffraction analysis of an M.HhaI-AdoMet complex. Biochemistry. 1992 Sep 15;31(36):8648–8653. [PubMed]
  • Cheng X, Kumar S, Posfai J, Pflugrath JW, Roberts RJ. Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell. 1993 Jul 30;74(2):299–307. [PubMed]
  • Wilson GG, Murray NE. Restriction and modification systems. Annu Rev Genet. 1991;25:585–627. [PubMed]
  • Bestor TH. DNA methylation: evolution of a bacterial immune function into a regulator of gene expression and genome structure in higher eukaryotes. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1235):179–187. [PubMed]
  • Wilson GG. Organization of restriction-modification systems. Nucleic Acids Res. 1991 May 25;19(10):2539–2566. [PMC free article] [PubMed]
  • Som S, Bhagwat AS, Friedman S. Nucleotide sequence and expression of the gene encoding the EcoRII modification enzyme. Nucleic Acids Res. 1987 Jan 12;15(1):313–332. [PMC free article] [PubMed]
  • Lauster R, Trautner TA, Noyer-Weidner M. Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. J Mol Biol. 1989 Mar 20;206(2):305–312. [PubMed]
  • Pósfai J, Bhagwat AS, Pósfai G, Roberts RJ. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 1989 Apr 11;17(7):2421–2435. [PMC free article] [PubMed]
  • Klimasauskas S, Timinskas A, Menkevicius S, Butkienè D, Butkus V, Janulaitis A. Sequence motifs characteristic of DNA[cytosine-N4]methyltransferases: similarity to adenine and cytosine-C5 DNA-methylases. Nucleic Acids Res. 1989 Dec 11;17(23):9823–9832. [PMC free article] [PubMed]
  • Ingrosso D, Fowler AV, Bleibaum J, Clarke S. Sequence of the D-aspartyl/L-isoaspartyl protein methyltransferase from human erythrocytes. Common sequence motifs for protein, DNA, RNA, and small molecule S-adenosylmethionine-dependent methyltransferases. J Biol Chem. 1989 Nov 25;264(33):20131–20139. [PubMed]
  • Wyszynski MW, Gabbara S, Kubareva EA, Romanova EA, Oretskaya TS, Gromova ES, Shabarova ZA, Bhagwat AS. The cysteine conserved among DNA cytosine methylases is required for methyl transfer, but not for specific DNA binding. Nucleic Acids Res. 1993 Jan 25;21(2):295–301. [PMC free article] [PubMed]
  • Mi S, Roberts RJ. The DNA binding affinity of HhaI methylase is increased by a single amino acid substitution in the catalytic center. Nucleic Acids Res. 1993 May 25;21(10):2459–2464. [PMC free article] [PubMed]
  • Hanck T, Schmidt S, Fritz HJ. Sequence-specific and mechanism-based crosslinking of Dcm DNA cytosine-C5 methyltransferase of E. coli K-12 to synthetic oligonucleotides containing 5-fluoro-2'-deoxycytidine. Nucleic Acids Res. 1993 Jan 25;21(2):303–309. [PMC free article] [PubMed]
  • Chen L, MacMillan AM, Chang W, Ezaz-Nikpay K, Lane WS, Verdine GL. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry. 1991 Nov 19;30(46):11018–11025. [PubMed]
  • Wyszynski MW, Gabbara S, Bhagwat AS. Substitutions of a cysteine conserved among DNA cytosine methylases result in a variety of phenotypes. Nucleic Acids Res. 1992 Jan 25;20(2):319–326. [PMC free article] [PubMed]
  • Balganesh TS, Reiners L, Lauster R, Noyer-Weidner M, Wilke K, Trautner TA. Construction and use of chimeric SPR/phi 3T DNA methyltransferases in the definition of sequence recognizing enzyme regions. EMBO J. 1987 Nov;6(11):3543–3549. [PubMed]
  • Trautner TA, Balganesh TS, Pawlek B. Chimeric multispecific DNA methyltransferases with novel combinations of target recognition. Nucleic Acids Res. 1988 Jul 25;16(14A):6649–6658. [PMC free article] [PubMed]
  • Wilke K, Rauhut E, Noyer-Weidner M, Lauster R, Pawlek B, Behrens B, Trautner TA. Sequential order of target-recognizing domains in multispecific DNA-methyltransferases. EMBO J. 1988 Aug;7(8):2601–2609. [PubMed]
  • Mi S, Roberts RJ. How M.MspI and M.HpaII decide which base to methylate. Nucleic Acids Res. 1992 Sep 25;20(18):4811–4816. [PMC free article] [PubMed]
  • Sznyter LA, Slatko B, Moran L, O'Donnell KH, Brooks JE. Nucleotide sequence of the DdeI restriction-modification system and characterization of the methylase protein. Nucleic Acids Res. 1987 Oct 26;15(20):8249–8266. [PMC free article] [PubMed]
  • Renbaum P, Abrahamove D, Fainsod A, Wilson GG, Rottem S, Razin A. Cloning, characterization, and expression in Escherichia coli of the gene coding for the CpG DNA methylase from Spiroplasma sp. strain MQ1(M.SssI). Nucleic Acids Res. 1990 Mar 11;18(5):1145–1152. [PMC free article] [PubMed]
  • Liu L, Santi DV. Mutation of asparagine 229 to aspartate in thymidylate synthase converts the enzyme to a deoxycytidylate methylase. Biochemistry. 1992 Jun 9;31(22):5100–5104. [PubMed]
  • Graves KL, Butler MM, Hardy LW. Roles of Cys148 and Asp179 in catalysis by deoxycytidylate hydroxymethylase from bacteriophage T4 examined by site-directed mutagenesis. Biochemistry. 1992 Oct 27;31(42):10315–10321. [PubMed]
  • Rossmann MG, Moras D, Olsen KW. Chemical and biological evolution of nucleotide-binding protein. Nature. 1974 Jul 19;250(463):194–199. [PubMed]
  • Wierenga RK, Terpstra P, Hol WG. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. [PubMed]
  • Som S, Friedman S. Identification of a highly conserved domain in the EcoRII methyltransferase which can be photolabeled with S-adenosyl-L-[methyl-3H]methionine. Evidence for UV-induced transmethylation of cysteine 186. J Biol Chem. 1991 Feb 15;266(5):2937–2945. [PubMed]
  • Harrison SC. A structural taxonomy of DNA-binding domains. Nature. 1991 Oct 24;353(6346):715–719. [PubMed]
  • Walter J, Trautner TA, Noyer-Weidner M. High plasticity of multispecific DNA methyltransferases in the region carrying DNA target recognizing enzyme modules. EMBO J. 1992 Dec;11(12):4445–4450. [PubMed]
  • Karreman C, de Waard A. Agmenellum quadruplicatum M.AquI, a novel modification methylase. J Bacteriol. 1990 Jan;172(1):266–272. [PMC free article] [PubMed]
  • Pósfai G, Kim SC, Szilák L, Kovács A, Venetianer P. Complementation by detached parts of GGCC-specific DNA methyltransferases. Nucleic Acids Res. 1991 Sep 25;19(18):4843–4847. [PMC free article] [PubMed]
  • Smith HO, Nathans D. Letter: A suggested nomenclature for bacterial host modification and restriction systems and their enzymes. J Mol Biol. 1973 Dec 15;81(3):419–423. [PubMed]
  • Zhang B, Tao T, Wilson GG, Blumenthal RM. The M.AluI DNA-(cytosine C5)-methyltransferase has an unusually large, partially dispensable, variable region. Nucleic Acids Res. 1993 Feb 25;21(4):905–911. [PMC free article] [PubMed]
  • Maekawa Y, Yasukawa H, Kawakami B. Cloning and nucleotide sequences of the BanI restriction-modification genes in Bacillus aneurinolyticus. J Biochem. 1990 Apr;107(4):645–649. [PubMed]
  • Kupper D, Zhou JG, Venetianer P, Kiss A. Cloning and structure of the BepI modification methylase. Nucleic Acids Res. 1989 Feb 11;17(3):1077–1088. [PMC free article] [PubMed]
  • Pósfai G, Kiss A, Erdei S, Pósfai J, Venetianer P. Structure of the Bacillus sphaericus R modification methylase gene. J Mol Biol. 1983 Nov 5;170(3):597–610. [PubMed]
  • Walter J, Noyer-Weidner M, Trautner TA. The amino acid sequence of the CCGG recognizing DNA methyltransferase M.BsuFI: implications for the analysis of sequence recognition by cytosine DNA methyltransferases. EMBO J. 1990 Apr;9(4):1007–1013. [PubMed]
  • Kiss A, Posfai G, Keller CC, Venetianer P, Roberts RJ. Nucleotide sequence of the BsuRI restriction-modification system. Nucleic Acids Res. 1985 Sep 25;13(18):6403–6421. [PMC free article] [PubMed]
  • Finnegan EJ, Dennis ES. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res. 1993 May 25;21(10):2383–2388. [PMC free article] [PubMed]
  • Yen RW, Vertino PM, Nelkin BD, Yu JJ, el-Deiry W, Cumaraswamy A, Lennon GG, Trask BJ, Celano P, Baylin SB. Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res. 1992 May 11;20(9):2287–2291. [PMC free article] [PubMed]
  • Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988 Oct 20;203(4):971–983. [PubMed]
  • Rouleau J, Tanigawa G, Szyf M. The mouse DNA methyltransferase 5'-region. A unique housekeeping gene promoter. J Biol Chem. 1992 Apr 15;267(11):7368–7377. [PubMed]
  • Shields SL, Burbank DE, Grabherr R, van Etten JL. Cloning and sequencing the cytosine methyltransferase gene M. CviJI from Chlorella virus IL-3A. Virology. 1990 May;176(1):16–24. [PubMed]
  • Zhang Y, Nelson M, Van Etten JL. A single amino acid change restores DNA cytosine methyltransferase activity in a cloned chlorella virus pseudogene. Nucleic Acids Res. 1992 Apr 11;20(7):1637–1642. [PMC free article] [PubMed]
  • Hanck T, Gerwin N, Fritz HJ. Nucleotide sequence of the dcm locus of Escherichia coli K12. Nucleic Acids Res. 1989 Jul 25;17(14):5844–5844. [PMC free article] [PubMed]
  • Sohail A, Lieb M, Dar M, Bhagwat AS. A gene required for very short patch repair in Escherichia coli is adjacent to the DNA cytosine methylase gene. J Bacteriol. 1990 Aug;172(8):4214–4221. [PMC free article] [PubMed]
  • Som S, Bhagwat AS, Friedman S. Nucleotide sequence and expression of the gene encoding the EcoRII modification enzyme. Nucleic Acids Res. 1987 Jan 12;15(1):313–332. [PMC free article] [PubMed]
  • Tran-Betcke A, Behrens B, Noyer-Weidner M, Trautner TA. DNA methyltransferase genes of Bacillus subtilis phages: comparison of their nucleotide sequences. Gene. 1986;42(1):89–96. [PubMed]
  • Slatko BE, Croft R, Moran LS, Wilson GG. Cloning and analysis of the HaeIII and HaeII methyltransferase genes. Gene. 1988 Dec 25;74(1):45–50. [PubMed]
  • Sugisaki H, Yamamoto K, Takanami M. The HgaI restriction-modification system contains two cytosine methylase genes responsible for modification of different DNA strands. J Biol Chem. 1991 Jul 25;266(21):13952–13957. [PubMed]
  • Düsterhöft A, Erdmann D, Kröger M. Isolation and genetic structure of the AvaII isoschizomeric restriction-modification system HgiBI from Herpetosiphon giganteus Hpg5: M.HgiBI reveals high homology to M.BanI. Nucleic Acids Res. 1991 Jun 25;19(12):3207–3211. [PMC free article] [PubMed]
  • Erdmann D, Düsterhöft A, Kröger M. Cloning and molecular characterization of the HgiCI restriction/modification system from Herpetosiphon giganteus Hpg9 reveals high similarity to BanI. Eur J Biochem. 1991 Dec 18;202(3):1247–1256. [PubMed]
  • Erdmann D, Horst G, Düsterhöft A, Kröger M. Stepwise cloning and genetic organization of the seemingly unclonable HgiCII restriction-modification system from Herpetosiphon giganteus strain Hpg9, using PCR technique. Gene. 1992 Aug 1;117(1):15–22. [PubMed]
  • Düsterhöft A, Erdmann D, Kröger M. Stepwise cloning and molecular characterization of the HgiDI restriction-modification system from Herpetosiphon giganteus Hpa2. Nucleic Acids Res. 1991 Mar 11;19(5):1049–1056. [PMC free article] [PubMed]
  • Düsterhöft A, Kröger M. Cloning, sequence and characterization of m5C-methyltransferase-encoding gene, hgiDIIM (GTCGAC), from Herpetosiphon giganteus strain Hpa2. Gene. 1991 Sep 30;106(1):87–92. [PubMed]
  • Card CO, Wilson GG, Weule K, Hasapes J, Kiss A, Roberts RJ. Cloning and characterization of the HpaII methylase gene. Nucleic Acids Res. 1990 Mar 25;18(6):1377–1383. [PMC free article] [PubMed]
  • Lange C, Noyer-Weidner M, Trautner TA, Weiner M, Zahler SA. M.H2I, a multispecific 5C-DNA methyltransferase encoded by Bacillus amyloliquefaciens phage H2. Gene. 1991 Apr;100:213–218. [PubMed]
  • Lin PM, Lee CH, Roberts RJ. Cloning and characterization of the genes encoding the MspI restriction modification system. Nucleic Acids Res. 1989 Apr 25;17(8):3001–3011. [PMC free article] [PubMed]
  • Nölling J, de Vos WM. Characterization of the archaeal, plasmid-encoded type II restriction-modification system MthTI from Methanobacterium thermoformicicum THF: homology to the bacterial NgoPII system from Neisseria gonorrhoeae. J Bacteriol. 1992 Sep;174(17):5719–5726. [PMC free article] [PubMed]
  • Stein DC, Chien R, Seifert HS. Construction of a Neisseria gonorrhoeae MS11 derivative deficient in NgoMI restriction and modification. J Bacteriol. 1992 Aug;174(15):4899–4906. [PMC free article] [PubMed]
  • Sullivan KM, Saunders JR. Sequence analysis of the NgoPII methyltransferase gene from Neisseria gonorrhoeae P9: homologies with other enzymes recognizing the sequence 5'-GGCC-3'. Nucleic Acids Res. 1988 May 25;16(10):4369–4387. [PMC free article] [PubMed]
  • Labbé D, Höltke HJ, Lau PC. Cloning and characterization of two tandemly arranged DNA methyltransferase genes of Neisseria lactamica: an adenine-specific M.NlaIII and a cytosine-type methylase. Mol Gen Genet. 1990 Oct;224(1):101–110. [PubMed]
  • Behrens B, Noyer-Weidner M, Pawlek B, Lauster R, Balganesh TS, Trautner TA. Organization of multispecific DNA methyltransferases encoded by temperate Bacillus subtilis phages. EMBO J. 1987 Apr;6(4):1137–1142. [PubMed]
  • Seeber S, Kessler C, Götz F. Cloning, expression and characterization of the Sau3AI restriction and modification genes in Staphylococcus carnosus TM300. Gene. 1990 Sep 28;94(1):37–43. [PubMed]
  • Szilák L, Venetianer P, Kiss A. Cloning and nucleotide sequence of the genes coding for the Sau96I restriction and modification enzymes. Nucleic Acids Res. 1990 Aug 25;18(16):4659–4664. [PMC free article] [PubMed]
  • Davis R, van der Lelie D, Mercenier A, Daly C, Fitzgerald GF. ScrFI restriction-modification system of Lactococcus lactis subsp. cremoris UC503: cloning and characterization of two ScrFI methylase genes. Appl Environ Microbiol. 1993 Mar;59(3):777–785. [PMC free article] [PubMed]
  • Karreman C, de Waard A. Cloning and complete nucleotide sequences of the type II restriction-modification genes of Salmonella infantis. J Bacteriol. 1988 Jun;170(6):2527–2532. [PMC free article] [PubMed]
  • Buhk HJ, Behrens B, Tailor R, Wilke K, Prada JJ, Günthert U, Noyer-Weidner M, Jentsch S, Trautner TA. Restriction and modification in Bacillus subtilis: nucleotide sequence, functional organization and product of the DNA methyltransferase gene of bacteriophage SPR. Gene. 1984 Jul-Aug;29(1-2):51–61. [PubMed]
  • Pósfai G, Baldauf F, Erdei S, Pósfai J, Venetianer P, Kiss A. Structure of the gene coding for the sequence-specific DNA-methyltransferase of the B. subtilis phage SPR. Nucleic Acids Res. 1984 Dec 11;12(23):9039–9049. [PMC free article] [PubMed]
  • Karyagina AS, Lunin VG, Degtyarenko KN, Uvarov VY, Nikolskaya II. Analysis of the nucleotide and derived amino acid sequences of the SsoII restriction endonuclease and methyltransferase. Gene. 1993 Feb 14;124(1):13–19. [PubMed]
  • Lange C, Jugel A, Walter J, Noyer-Weidner M, Trautner TA. 'Pseudo' domains in phage-encoded DNA methyltransferases. Nature. 1991 Aug 15;352(6336):645–648. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press