Hydrogen sulphide protects mouse pancreatic β-cells from cell death induced by oxidative stress, but not by endoplasmic reticulum stress

S Taniguchi, L Kang, T Kimura and I Niki

Department of Pharmacology, Faculty of Medicine, Oita University, Hasama, Oita, Japan

BACKGROUND AND PURPOSE
Hydrogen sulphide (H2S), a potentially toxic gas, is also involved in the neuroprotection, neuromodulation, cardioprotection, vasodilatation and the regulation of inflammatory response and insulin secretion. We have recently reported that H2S suppresses pancreatic β-cell apoptosis induced by long-term exposure to high glucose. Here we examined the protective effects of sodium hydrosulphide (NaHS), an H2S donor, on various types of β-cell damage.

EXPERIMENTAL APPROACH
Isolated islets from mice or the mouse insulinoma MIN6 cells were cultured with palmitate, cytokines (a mixture of tumour necrosis factor-α, interferon-γ and interleukin-1β), hydrogen peroxide, thapsigargin or tunicamycin with or without NaHS. We examined DNA fragmentation, caspase-3 and -7 activities and reactive oxygen species (ROS) production in the treated cells thereafter. Apoptotic cell death in isolated islets was also assessed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) method.

KEY RESULTS
NaHS suppressed DNA fragmentation and the activities of caspase-3 and -7 induced by palmitate, the cytokines or hydrogen peroxide. In contrast, NaHS failed to protect islets and MIN6 cells from apoptosis induced by thapsigargin and tunicamycin, both of which cause endoplasmic reticulum stress. NaHS suppressed ROS production induced by cytokines or hydrogen peroxide but it had no effect on ROS production in thapsigargin-treated cells. NaHS increased Akt phosphorylation in MIN6 cells treated with cytokines but not in cells treated with thapsigargin. Treatment with NaHS decreased TUNEL-positive cells in cytokine-exposed islets.

CONCLUSIONS AND IMPLICATIONS
H2S may prevent pancreatic β-cells from cell apoptosis via an anti-oxidative mechanism and the activation of Akt signalling.

Abbreviations
CBS, cystathionine β-synthase; CO, carbon monoxide; CSE, cystathionine γ-lyase; DCF, dichlorofluorescein; DMEM, Dulbecco’s modified Eagle’s medium; ER, endoplasmic reticulum; FBS, fetal bovine serum; GSH, glutathione; H2DCF, dichlorodihydrofluorescein; H2DCFDA, dichlorodihydrofluorescein diacetate; H2O2, hydrogen peroxide; H2S, hydrogen sulphide; HK buffer, HEPES-buffered Krebs-Ringer bicarbonate buffer; IFN-γ, interferon-γ; IL-1β, interleukin-1β; NaHS, sodium hydrosulphide; NO, nitric oxide; p-Akt, phosphorylated Akt; ROS, reactive oxygen species; SDS, sodium dodecyl sulphate; T-TBS, Tris-buffered saline containing Tween 20; TNF-α, tumour necrosis factor-α; TUNEL, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling
Introduction

Hydrogen sulphide (H$_2$S) is a pleiotropic gasotransmitter, which can be produced from L-cysteine (Maclean and Kraus, 2004; Łowicka and Beltowski, 2007; Li and Moore, 2008; Gadalla and Snyder, 2010). Like the other two gasotransmitters, nitric oxide (NO) and carbon monoxide (CO), H$_2$S penetrates plasma membranes and transduces intracellular and intercellular signals (Nagai et al., 2004; Łowicka and Beltowski, 2007; Li and Moore, 2008; Gadalla and Snyder, 2010). H$_2$S plays versatile roles in cell death/survival. In aortic smooth muscle cells, lung fibroblasts and pancreatic acinar cells, exposure to H$_2$S results in apoptosis (Cao et al., 2006; Yang et al., 2006; Baskar et al., 2007). H$_2$S, however, has a protective role in neural cells, cardiomyocytes and hepatocytes against cellular damage including inflammation and ischaemia reperfusion (Jha et al., 2009; Kimura et al., 2009; Chen et al., 2008; Poitout and Robertson, 2008; Robertson, 2009). The failure of β-cells is involved in the pathogenesis and progression of diabetes. Therefore, β-cell protection is the focus of new strategies for the treatment of diabetes (Del Prato et al., 2007; Wajchenberg, 2007).

We have recently reported that H$_2$S inhibits insulin release (Kaneko et al., 2006) and prevents high glucose-induced apoptosis in mouse pancreatic islets (Kaneko et al., 2009). We also found that treatment of islets with L-cysteine improved their secretory responsiveness following stimulation with glucose (Kaneko et al., 2009). Here, we have characterized the cytoprotective effects of H$_2$S on pancreatic β-cells.

Methods

Animals

ICR mice were purchased from Japan SLC (Shizuoka, Japan). Mice were housed in separate cages in a room with controlled temperature, humidity and lighting (12 h light and 12 h dark cycle) and allowed free access to water and standard chow (CE-2; Clea Japan, Tokyo, Japan). All animal procedures were in accordance with the Principles of Laboratory Animal Care and were approved by the University Committee on Animal Experiments in accordance with the Guideline for Animal Experimentation in Oita University.

Cell preparation

Pancreatic islets were isolated from male ICR mice by the collagenase digestion method. The solution used for the isolation was HEPES-buffered Krebs-Ringer bicarbonate buffer (HK buffer) containing 119 mmol·L$^{-1}$ NaCl, 4.75 mmol·L$^{-1}$ KCl, 5 mmol·L$^{-1}$ NaHCO$_3$, 2.54 mmol·L$^{-1}$ CaCl$_2$, 1.2 mmol·L$^{-1}$ MgSO$_4$, 1.2 mmol·L$^{-1}$ KH$_2$PO$_4$ and 20 mmol·L$^{-1}$ HEPES (pH 7.4 adjusted with sodium hydroxide) supplemented with 3 mmol·L$^{-1}$ glucose. Mouse insulinoma MIN6 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 15% (vol-vol)$^{-1}$ fetal bovine serum (FBS) at 37°C in a humidified atmosphere of 95% air/5% CO$_2$.

Measurement of fragmented DNA

Isolated islets (25–30 islets per dish) were transferred to RPMI 1640 medium (Sigma-Aldrich, St. Louis, MO, USA) containing 10% FBS and cultured for 18 h with 5 mmol·L$^{-1}$ glucose alone or 5 mmol·L$^{-1}$ glucose plus cytokines (1000 U·mL$^{-1}$ tumour necrosis factor-α (TNF-α), 1000 U·mL$^{-1}$ interferon-γ (IFN-γ) and 50 U·mL$^{-1}$ interleukin-1β (IL-1β)), 10 μmol·L$^{-1}$ hydrogen peroxide (H$_2$O$_2$), 1 μmol·L$^{-1}$ thapsigargin or 5 μg·L$^{-1}$ tunicamycin in the presence or absence of 0.1 mmol·L$^{-1}$ sodium hydrosulphide (NaHS). For treatment with free fatty acids, islets were cultured for 72 h in RPMI 1640 medium containing 1% (wt-vol)$^{-1}$ BSA and 5 mmol·L$^{-1}$ glucose alone or 5 mmol·L$^{-1}$ glucose plus 0.5 mmol·L$^{-1}$ palmitate. Palmitate was dissolved at 500 mmol·L$^{-1}$ in ethanol, heated to 60°C, and then added to RPMI 1640 medium containing 10% (wt-vol)$^{-1}$ fatty acid-free BSA to generate a 5 mmol·L$^{-1}$ palmitate stock solution. The stock solution was used in a 1:10 dilution in RPMI 1640 medium. MIN6 cells (1 × 105 to 2 × 105 cells per dish) were cultured for 18 h in DMEM (supplemented with 15% FBS) containing 20 mmol·L$^{-1}$ glucose alone or 20 mmol·L$^{-1}$ glucose plus cytokines, H$_2$O$_2$, thapsigargin or tunicamycin. For treatment with free fatty acids, MIN6 cells were cultured for 72 h in DMEM containing 1% BSA and 20 mmol·L$^{-1}$ glucose alone or 20 mmol·L$^{-1}$ glucose plus 0.5 mmol·L$^{-1}$ palmitate. Cultured islets and MIN6 cells were washed 3 times with HK buffer containing 3 mmol·L$^{-1}$ glucose. Cyttoplasmic histone-associated DNA fragments were quantified by the cell death-detection ELISA kit (Roche Diagnostics, Mannheim, Germany), which detects DNA-laddering derived from apoptotic cell death with anti-histone and anti-DNA monoclonal antibodies.

Measurement of caspase activity

Caspase-3 and -7 activities were analysed with the Caspase-Glo 3/7 assay kit (Promega, Madison, WI, USA). Cleavage of the luminogenic substrate (aminoluciferin containing DEVD sequence) by caspase-3 or -7 releases a substrate for luciferase generating a luminescent signal. The islets were cultured as described above, and the caspase activities therein were detected according to the manufacturer’s instructions.

Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and insulin staining

Isolated islets (100 islets/dish) were transferred to RPMI 1640 medium containing 10% FBS and cultured for 18 h with 5 mmol·L$^{-1}$ glucose alone or 5 mmol·L$^{-1}$ glucose plus the cytokine mixture in the presence or absence of 0.1 mmol·L$^{-1}$ NaHS. Cultured islets were fixed with phosphate-buffered 3%
Measurement of ROS

The ROS production in pancreatic islets and MIN6 cells was assessed using dichlorodihydrofluorescein diacetate (H2DCFDA). H2DCFDA is a cell-permeable indicator of ROS that is hydrolysed by intracellular esterases to the nonfluorescent dichlorodihydrofluorescein (H2DCF). In the presence of ROS, H2DCF is oxidized to the fluorescent dichlorodihydrofluorescein (DCF) in the cells. Isolated islets were incubated with HK buffer containing 0.1% BSA and further incubated for 30 min at 37°C in the dark. Islets were then washed twice with HK buffer containing 0.1% BSA and further incubated for 12 h in the BSA-containing HK buffer supplemented with 5 mmol·L⁻¹ glucose alone or 5 mmol·L⁻¹ glucose plus one of the following – the cytokine mixture or 1 μmol·L⁻¹ thapsigargin – in the presence or absence of 0.1 μmol·L⁻¹ H2O2. The cells were sonicated in an ice-cold buffer [Tris-HCl (pH 7.4), 2 mmol·L⁻¹ EDTA, 2 mmol·L⁻¹ 2-mercaptoethanol, 50 μg·mL⁻¹ phenylmethylsulphonylfluoride, 10 μg·mL⁻¹ aprotinin, 10 μg·mL⁻¹ leupeptin, 250 mmol·L⁻¹ sucrose, 10 mmol·L⁻¹ sodium fluoride and 2 mmol·L⁻¹ [γ-glycerophosphate]. The protein samples were boiled in a buffer containing 62.5 mmol·L⁻¹ Tris-HCl (pH 6.8), 2% (wt-vol⁻¹) sodium dodecyl sulphate (SDS), 10% (wt-vol⁻¹) glycerol, 5% (vol-vol⁻¹) 2-mercaptoethanol and 0.002% (wt-vol⁻¹) bromophenol blue. The proteins in the samples were then separated on a 10% (wt-vol⁻¹) polyacrylamide gel and transferred to polyvinylidene difluoride membrane. The membrane was blocked with 1% (wt-vol⁻¹) skim milk in a buffer [Tris-buffered saline containing Tween 20 (T-TBS)] containing 10 mmol·L⁻¹ Tris-HCl (pH 7.4), 137 mmol·L⁻¹ NaCl and 0.1% (vol-vol⁻¹) Tween 20, and incubated overnight at 4°C with rabbit antiphospho (Ser473)-Akt antibody (diluted 1:200). The membrane was washed several times in T-TBS and further incubated with a horseradish peroxidase-conjugated donkey anti-rabbit IgG antibody (diluted 1:10 000). Immunopositive bands were visualized using a commercial kit (ECL plus Western Blotting Reagent Pack, GE Healthcare, Piscataway, NJ, USA). For standardization, the blots were stripped and reprobed with anti-Akt antibodies (diluted 1:2000). The intensity of each band was measured with the NIH image software.

Statistical analysis

Results are expressed as the mean ± SE. Statistical analyses of DNA fragmentation, caspase activity and ROS production were performed by one-way ANOVA followed by the Tukey’s method. Statistical significance of immunoblot analysis was calculated using Student’s unpaired t-test. Significance was set at P < 0.05.

Materials

TNF-α, IFN-γ and IL-1β were purchased from Peprotech (Rocky Hill, NJ, USA). The ROS indicator H2DCFDA was obtained from Molecular Probes (Eugene, OR, USA). The primary antibodies against Akt and phospho (Ser473)-Akt were purchased from Cell Signaling (Danvers, MA, USA), and the secondary antibody against rabbit IgG was from GE Healthcare (Piscataway, NJ, USA). The anti-insulin guinea-pig antibody was purchased from Seikagaku Corporation (Tokyo, Japan), and Alexa-Fluor-568 anti-guinea-pig IgG was from Molecular Probes. All other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) or Wako (Osaka, Japan).

Results

Effects of NaHS on DNA fragmentation in mouse pancreatic islets treated with palmitate or cytokines

We measured DNA fragmentation to determine whether NaHS protects against the islet cell apoptosis induced by palmitate or inflammatory cytokines. Palmitate at 0.5 mmol·L⁻¹ caused a 2.9-fold increase over control treatments (5 mmol·L⁻¹ glucose) in DNA fragmentation within islets (Figure 1A). Treatment with the cytokine mixture (1000 U·mL⁻¹ TNF-α, 1000 U·mL⁻¹ IFN-γ and 50 U·mL⁻¹ IL-1β) also increased DNA fragmentation in islets by 60% (Figure 1B). The increase in DNA fragmentation induced by palmitate or cytokine treatment was inhibited by co-treatment with 0.1 mmol·L⁻¹ NaHS (Figure 1A and B).

Effects of NaHS on DNA fragmentation by H2O2, thapsigargin and tunicamycin

H2O2 at 10 mmol·L⁻¹ increased DNA fragmentation in mouse islets as a result of oxidative stress. Treatment of islets with 0.1 mmol·L⁻¹ NaHS suppressed H2O2-induced DNA fragmentation (Figure 2). We also examined the effects of NaHS on DNA fragmentation induced by thapsigargin (1 μmol·L⁻¹) and tunicamycin (5 μg·mL⁻¹) both of which cause endoplasmic reticulum (ER) stress. Treatment with thapsigargin or tunicamycin markedly increased DNA fragmentation; however,
co-treatment with NaHS did not inhibit DNA fragmentation induced by thapsigargin or tunicamycin treatment (Figure 3).

Effects of NaHS on the activities of caspase-3 and -7

Islet cell death was also assayed by measuring the caspase-3 and -7 activities. Caspase-3 and -7 activities in the islets increased by 19–31% on exposure to 10 μmol·L⁻¹ H₂O₂, the cytokine mixture or 1 μmol·L⁻¹ thapsigargin as compared to control (Figure 4). NaHS at 0.1 mmol·L⁻¹ suppressed the caspase-3 and -7 activities induced by H₂O₂ or cytokines (Figure 4A and B), but NaHS failed to suppress caspase-3 and -7 activities induced by thapsigargin (Figure 4C). These results were in good agreement with the results of the DNA fragmentation assays.

Effects of NaHS on the proportion of TUNEL-positive pancreatic β-cells

To determine whether NaHS protects pancreatic β-cells from apoptosis, mouse isolated islets were cultured with the cytokine mixture and then were double stained using TUNEL reagent and anti-insulin antibody. Treatment with the cytokine mixture increased the proportion of insulin- and
TUNEL-positive cells. NaHS at 0.1 mmol·L⁻¹ decreased TUNEL-positive β-cells induced by the cytokine mixture (Figure 5).

Effects of NaHS against DNA fragmentation of MIN6 cells
To further examine the cytoprotective effects of NaHS, DNA fragmentation in MIN6 cells was analysed in MIN6 cells treated with palmitate, the cytokine mixture, H₂O₂ or thapsigargin. Treatment of MIN6 cells with 0.5 mmol·L⁻¹ palmitate, the cytokine mixture, 40 μmol·L⁻¹ H₂O₂ or 1 μmol·L⁻¹ thapsigargin caused a 1.3- to 5-fold increase over control in DNA fragmentation (Figure 6). Co-treatment with 0.1 mmol·L⁻¹ NaHS prevented the accumulation of fragmented DNA induced by palmitate, cytokines and H₂O₂ (Figure 6A–C), but it did not prevent DNA fragmentation induced by thapsigargin (Figure 6D).

Effects of NaHS on ROS production
Oxidative stress increases ROS production in cells. We investigated whether NaHS suppresses ROS production. Co-incubation of islets with 0.1 mmol·L⁻¹ NaHS suppressed cytokine-induced ROS production, although treatment with the cytokine mixture did not significantly increase the production (Figure 7A). Treatment with H₂O₂ or cytokines significantly increased ROS production in MIN6 cells, and this increase was inhibited by co-treatment with NaHS (Figure 7B). Thapsigargin did not increase ROS production, and addition of NaHS did not change the ROS production in thapsigargin-treated islets and MIN6 cells (Figure 7A and B). One of the reasons why the cytokine mixture failed to induce a statistically significant increase in islet ROS production may

![Figure 5](image1)
Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) staining of mouse islets. Isolated pancreatic islets were cultured for 18 h with 5 mmol·L⁻¹ glucose alone (upper lane) or 5 mmol·L⁻¹ glucose plus the cytokine mixture with (lower lane) or without (middle lane) 0.1 mmol·L⁻¹ NaHS. Apoptotic cell death is demonstrated by the TUNEL staining in green. Insulin-positive cells are shown in red. Scale bar = 50 μm.

![Figure 6](image2)
Effects of sodium hydrosulphide (NaHS) on MIN6 cell death induced by palmitate, cytokines, hydrogen peroxide (H₂O₂) or thapsigargin. MIN6 were cultured with 20 mmol·L⁻¹ glucose alone or 20 mmol·L⁻¹ glucose plus 0.5 mmol·L⁻¹ palmitate (A), the cytokine mixture (B), 40 μmol·L⁻¹ H₂O₂ (C) or 1 μmol·L⁻¹ thapsigargin (D) in the presence or absence of 0.1 mmol·L⁻¹ NaHS. Fragmented DNA in MIN6 cells was quantified by ELISA to evaluate apoptotic cell death. Each column represents the mean ± SE from three to five separate experiments. *P < 0.05 and **P < 0.01.
be because pancreatic islets are composed of different types of cells other than β-cells.

Effects of NaHS on Akt phosphorylation

Akt signalling is activated by phosphorylation, and this activation promotes cell proliferation and survival. We examined whether Akt activation contributes to the cytoprotection mediated by NaHS (Figure 8A and B). NaHS increased Akt phosphorylation in MIN6 cells cultured with cytokines, but not in cells cultured with thapsigargin.

Discussion and conclusions

We have demonstrated that H2S has a protective effect against fatty acid-, cytokine- and H2O2-induced β-cell apoptosis. We previously reported that H2S provides cytoprotection to β-cells from high glucose-induced damage (Kaneko et al., 2009). High glucose and free fatty acids cause β-cell apoptosis through various mechanisms including oxidative stress, ER stress, free radical-induced damage, persistent elevation of the intracellular Ca2+ levels and increases in the production of cytokines (Efanova et al., 1998; Chang-Chen et al., 2008; Poitout and Robertson, 2008; Robertson, 2009). In particular, β-cells are sensitive to oxidative stress because they express low levels of anti-oxidative enzymes such as superoxide dismutase and catalase (Lenzen et al., 1996). Chronic exposure to high concentrations of glucose, free fatty acids or cytokines cause mitochondrial dysfunction and the production of ROS, which induces oxidative stress (Lowell and Shulman, 2005; Lenzen, 2008). Overproduction of ROS and a redox imbalance result in DNA damage, protein oxidation, lipid peroxidation and inhibition of gene expression. The effects of NaHS on ROS production suggest that H2S protects β-cells via its anti-oxidant activity.

H2S has many physiological effects including the regulation of apoptosis, inflammatory response, synaptic transmission and smooth muscle relaxation. Anti-apoptotic effects of H2S may result from a direct chemical reaction between H2S and oxidative substances such as superoxide and hydrogen peroxide. However, other metabolic and signalling pathways may also participate in H2S-mediated anti-apoptotic effects. For example, NaHS increased the production of GSH in MIN6 cells (Kaneko et al., 2009), and GSH is a potent intracellular antioxidant that attenuates oxidative stress. In neuronal cells, the protective effects of H2S are also mediated by increased GSH levels (Kimura and Kimura, 2004; Kimura et al., 2010). Therefore, the increase of GSH by H2S may contribute to the protection of β-cells from oxidative stress and to the maintenance of cellular redox homeostasis. H2S is reported to have cardioprotective effects in the events of ischaemia-reperfusion injury (Elrod et al., 2007; Calvert et al., 2009; Sivarajah et al., 2009). The cardioprotection induced by H2S is mediated by activation of the phosphatidylinositol 3-kinase/Akt pathway (Hu et al., 2008; Yong et al., 2008). In pancreatic β-cells, Akt plays important roles in the regulation of cell mass and function (Dickson and Rhodes, 2004; Elghazi and Bernal-Mizrachi, 2009). In this study, Akt phosphorylation was increased after NaHS treatment. We suggest that the activation of Akt signalling may be involved in the H2S-mediated suppression of β-cell apoptosis.

Unexpectedly, H2S failed to influence ER stress-induced apoptosis. This observation contradicted a previous report demonstrating that H2S stimulated ER stress-induced apoptosis of INS-1E, a rat insulinoma cell line (Yang et al., 2007). This discrepancy may result from species-specific differences in the sensitivity of the β-cells to H2S or in the experimental conditions used for the induction of apoptosis.

Figure 7

Production of reactive oxygen species (ROS) in pancreatic islets and MIN6 cells. (A) Pancreatic islets were preincubated for 30 min with 10 μmol·L-1 dichlorodihydrofluorescein diacetate (H2DCFDA) fluorescence reagent and then incubated for 12 h with 5 mmol·L-1 glucose alone or 5 mmol·L-1 glucose plus the cytokine mixture or 1 μmol·L-1 thapsigargin in the presence or absence of 0.1 mmol·L-1 sodium hydrosulphide (NaHS). (B) MIN6 cells were preincubated for 30 min with 10 μmol·L-1 H2DCFDA fluorescence reagent, and then incubated for 12 h with 20 mmol·L-1 glucose alone or 20 mmol·L-1 glucose plus 30 μmol·L-1 hydrogen peroxide (H2O2), the cytokine mixture or 1 μmol·L-1 thapsigargin in the presence or absence of 0.1 mmol·L-1 NaHS. The ROS levels were measured using a dichlorodihydrofluorescein fluorescence assay. Each column represents the mean ± SE from three to five separate experiments. **P < 0.01.

Figure 8

Effects of sodium hydrosulphide (NaHS) on Akt phosphorylation. MIN6 cells were cultured for 6 h with the cytokine mixture or 1 μmol·L-1 thapsigargin in the presence or absence of 0.1 mmol·L-1 NaHS. The concomitant concentration of glucose was 20 mmol·L-1. Protein extracts from these cells were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and immunoblotted for the detection of phosphorylated (upper lane) and total (lower lane) Akt (A). The phosphorylated Akt (p-Akt) and total Akt levels were then analysed by densitometrical measurement of the intensity of each band with the NIH image software (B). The ratio of p-Akt to total Akt was calculated. Each column represents the mean ± SE from four to five separate experiments. *P < 0.05.
H$_2$S is endogenously produced by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) (Maclean and Kraus, 2004). Recent studies suggest that 3-mercaptopyruvate sulphurtransferase may be involved in the enzymatic production of endogenous H$_2$S (Shibuya et al., 2009), although the distribution of this enzyme has not been examined thoroughly. We have recently reported that CBS is constitutively expressed in mouse pancreatic islets but that the expression of CSE is induced by glucose stimulation (Kaneko et al., 2009). This reminds us of distinct roles of constitutive and inducible NO synthases (Nathan and Xie, 1994; Umar and van der Laarse, 2010). Constitutive NO synthase produces NO in a Ca$^{2+}$/calmodulin-dependent manner and generates NO to transduce the Ca$^{2+}$ signal. On the other hand, inducible NO synthase functions in apoptosis. Therefore, H$_2$S-producing enzymes have specific and distinct functions; the constitutive enzyme, CBS, acutely inhibits insulin exocytosis, whereas CSE modulates cell survival/death (Yang et al., 2007; Kaneko et al., 2009). This hypothesis requires additional experimental confirmation. Together with our recent findings that H$_2$S suppresses insulin secretion over the short-term (Kaneko et al., 2006) and prevents glucotoxicity during long-term exposure to high glucose (Kaneko et al., 2009), the present findings also support our hypothesis that CSE may be an ‘intrinsic brake’ which functions as a safety device in pancreatic β-cells.

In conclusion, H$_2$S protects pancreatic β-cells against oxidative stress via an anti-oxidative mechanism and by the activation of Akt signalling. We suggest that H$_2$S production via glucose-induced CSE expression may be a self-protecting mechanism that functions under diabetic conditions.

Acknowledgements

The authors thank Professor J-I. Miyazaki (Osaka University) for his gift of MIN6 cells and Dr Y Kaneko for her helpful advice. This work was partly supported by KAKENHI (21591146 & 22790255) from Japan Society Promotion of Science and Research Fund at the Discretion of President, Oita University, and grants from Oita Broadcasting System Cultural Foundation and from Oita University Venture Business Laboratory.

Conflicts of interest

The authors state no conflict of interest.

References

