PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2011 January 1; 67(Pt 1): o71.
Published online 2010 December 11. doi:  10.1107/S1600536810050609
PMCID: PMC3050377

2-Amino-4-(2,4-dichloro­phen­yl)-6-(naphthalen-1-yl)nicotinonitrile

Abstract

In the crystal structure of the title compound, C22H13Cl2N3, the mol­ecules are connected via inter­molecular C—H(...)N and N—H(...)N hydrogen bonds, forming a three-dimensional network. The dihedral angles between naphthyl ring system and the pyridyl and benzene rings are 55.04 (7) and 75.87 (7)°, respectively, whereas the pyridyl and benzene rings are oriented at a dihedral angle of 59.56 (8)°.

Related literature

For the synthetic procedure, see: Mantri et al. (2008 [triangle]). For the use of the title compound in the preparation of medicines, see: Mkhalid et al. (2006 [triangle]). For general background to this type of compound, see: Moreau & Huber (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-67-00o71-scheme1.jpg

Experimental

Crystal data

  • C22H13Cl2N3
  • M r = 390.25
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-00o71-efi1.jpg
  • a = 9.5020 (19) Å
  • b = 10.054 (2) Å
  • c = 10.735 (2) Å
  • α = 72.78 (3)°
  • β = 89.17 (3)°
  • γ = 74.81 (3)°
  • V = 943.1 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 293 K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Entaf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.901, T max = 0.965
  • 3686 measured reflections
  • 3463 independent reflections
  • 2648 reflections with I > 2σ(I)
  • R int = 0.014
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.146
  • S = 1.00
  • 3463 reflections
  • 252 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810050609/bq2258sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810050609/bq2258Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, and the fund of Jinling Institute of Technology (jit-n-2009–017) for support..

supplementary crystallographic information

Comment

The title compound, C22H13Cl2N3,(I), contains amino group, which can react with different groups to prepare various function organic compounds. It is a kind of aromatic organic intermediate which can be used for many fields such as medicine (Mantri et al., 2008). The molecular structure of (I) is shown in Fig. 1. In (I), the naphthyl and the two rings, pyridyl and phenyl are oriented with different dihedral angles; 55.04 (7) ° between naphthyl and pyridyl, 75.87 (7) ° between naphthyl and phenyl and 59.56 (8) ° between pyridyl and phenyl. In the crystal structure of the title compound, the molecules were connected together via N—H···N and C—H···N intermolecular hydrogen bonds to form a three dimensional network, which seems to be very effective in the stabilization of the crystal structure.

Experimental

The title compound, (I) was prepared by the literature method (Mantri et al., 2008). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in methanol (20 ml) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.86 Å for N—H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Figures

Fig. 1.
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram for (I). C—H···N and N—H···N hydrogen bonds are shown by dashed lines.

Crystal data

C22H13Cl2N3Z = 2
Mr = 390.25F(000) = 400
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5020 (19) ÅCell parameters from 25 reflections
b = 10.054 (2) Åθ = 10–14°
c = 10.735 (2) ŵ = 0.36 mm1
α = 72.78 (3)°T = 293 K
β = 89.17 (3)°Block, colourless
γ = 74.81 (3)°0.30 × 0.10 × 0.10 mm
V = 943.1 (3) Å3

Data collection

Entaf–Nonius CAD-4 diffractometer2648 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
graphiteθmax = 25.4°, θmin = 2.0°
ω/2θ scansh = 0→11
Absorption correction: ψ scan (North et al., 1968)k = −11→12
Tmin = 0.901, Tmax = 0.965l = −12→12
3686 measured reflections3 standard reflections every 200 reflections
3463 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.095P)2 + ] where P = (Fo2 + 2Fc2)/3
3463 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.37446 (8)0.08316 (9)0.92700 (9)0.0687 (3)
N10.36411 (19)0.4640 (2)0.89712 (17)0.0331 (4)
C1−0.0992 (3)0.2943 (3)0.9925 (3)0.0425 (6)
H1B−0.09420.35311.04390.051*
Cl20.13996 (8)0.12749 (9)0.73801 (8)0.0635 (3)
N20.4248 (2)0.3529 (3)1.1161 (2)0.0414 (5)
H2A0.480 (3)0.408 (3)1.110 (2)0.044 (7)*
H2B0.398 (3)0.313 (3)1.193 (3)0.053 (8)*
C2−0.2176 (3)0.2375 (3)0.9987 (3)0.0477 (6)
H2C−0.29190.25801.05320.057*
C3−0.2235 (3)0.1508 (3)0.9234 (3)0.0442 (6)
N30.1702 (3)0.1711 (3)1.2494 (2)0.0542 (6)
C4−0.1143 (3)0.1165 (3)0.8436 (2)0.0426 (6)
H4A−0.11920.05570.79420.051*
C50.0034 (3)0.1752 (3)0.8384 (2)0.0390 (6)
C60.0130 (2)0.2659 (2)0.9114 (2)0.0350 (5)
C70.1356 (2)0.3340 (2)0.9053 (2)0.0347 (5)
C80.1657 (3)0.4256 (3)0.7898 (2)0.0394 (6)
H8A0.11140.44310.71250.047*
C90.2771 (2)0.4911 (2)0.7898 (2)0.0353 (5)
C100.3364 (2)0.3766 (2)1.0103 (2)0.0315 (5)
C110.2194 (2)0.3119 (2)1.0184 (2)0.0327 (5)
C120.1897 (2)0.2309 (3)1.1454 (2)0.0372 (5)
C130.3005 (2)0.6054 (3)0.6730 (2)0.0364 (5)
C140.1836 (3)0.7200 (3)0.6165 (3)0.0528 (7)
H14A0.09070.71810.64410.063*
C150.2017 (4)0.8417 (3)0.5168 (3)0.0660 (9)
H15A0.12090.91840.47830.079*
C160.3370 (3)0.8461 (3)0.4774 (3)0.0615 (8)
H16A0.34860.92780.41400.074*
C170.4602 (3)0.7293 (3)0.5308 (2)0.0459 (6)
C180.6025 (3)0.7317 (4)0.4896 (3)0.0615 (8)
H18A0.61560.81400.42800.074*
C190.7199 (3)0.6162 (4)0.5385 (3)0.0623 (8)
H19A0.81280.62080.51260.075*
C200.7004 (3)0.4907 (3)0.6275 (3)0.0520 (7)
H20A0.78010.41010.65760.062*
C210.5663 (3)0.4846 (3)0.6708 (2)0.0411 (6)
H21A0.55610.39990.73060.049*
C220.4431 (3)0.6037 (3)0.6270 (2)0.0355 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0450 (4)0.0707 (5)0.1083 (7)−0.0386 (4)0.0167 (4)−0.0338 (5)
N10.0318 (10)0.0407 (11)0.0316 (10)−0.0177 (8)0.0053 (8)−0.0112 (8)
C10.0358 (13)0.0445 (14)0.0554 (15)−0.0182 (11)0.0083 (11)−0.0211 (12)
Cl20.0653 (5)0.0837 (5)0.0692 (5)−0.0447 (4)0.0347 (4)−0.0439 (4)
N20.0432 (12)0.0565 (14)0.0308 (11)−0.0301 (11)0.0007 (9)−0.0078 (10)
C20.0350 (13)0.0484 (15)0.0667 (17)−0.0175 (11)0.0154 (12)−0.0227 (13)
C30.0327 (13)0.0409 (14)0.0607 (16)−0.0206 (11)0.0027 (11)−0.0083 (12)
N30.0611 (15)0.0587 (14)0.0428 (13)−0.0297 (12)0.0063 (11)−0.0038 (11)
C40.0444 (14)0.0422 (14)0.0486 (14)−0.0229 (12)0.0031 (11)−0.0148 (11)
C50.0370 (13)0.0454 (14)0.0371 (12)−0.0202 (11)0.0064 (10)−0.0083 (11)
C60.0315 (12)0.0369 (12)0.0376 (12)−0.0161 (10)−0.0002 (10)−0.0068 (10)
C70.0308 (11)0.0372 (12)0.0412 (13)−0.0154 (10)0.0055 (10)−0.0141 (10)
C80.0367 (13)0.0532 (15)0.0345 (12)−0.0242 (11)0.0004 (10)−0.0117 (11)
C90.0351 (12)0.0412 (13)0.0338 (12)−0.0166 (10)0.0067 (10)−0.0124 (10)
C100.0307 (11)0.0338 (12)0.0339 (12)−0.0131 (9)0.0056 (9)−0.0122 (9)
C110.0314 (11)0.0344 (12)0.0359 (12)−0.0149 (9)0.0062 (9)−0.0110 (10)
C120.0361 (12)0.0378 (13)0.0418 (14)−0.0186 (10)0.0031 (10)−0.0106 (11)
C130.0376 (13)0.0434 (13)0.0310 (12)−0.0179 (11)0.0030 (10)−0.0092 (10)
C140.0411 (15)0.0617 (18)0.0483 (15)−0.0126 (13)0.0071 (12)−0.0071 (13)
C150.0593 (19)0.0566 (18)0.0579 (18)−0.0013 (15)0.0045 (15)0.0059 (14)
C160.0656 (19)0.0498 (17)0.0534 (17)−0.0141 (15)0.0135 (14)0.0057 (13)
C170.0513 (15)0.0503 (15)0.0363 (13)−0.0222 (13)0.0078 (11)−0.0062 (11)
C180.065 (2)0.069 (2)0.0523 (16)−0.0370 (17)0.0211 (14)−0.0053 (15)
C190.0465 (16)0.088 (2)0.0569 (18)−0.0307 (17)0.0174 (14)−0.0192 (16)
C200.0407 (14)0.0675 (18)0.0458 (15)−0.0114 (13)0.0085 (12)−0.0174 (14)
C210.0445 (14)0.0472 (14)0.0315 (12)−0.0153 (12)0.0056 (10)−0.0094 (11)
C220.0396 (13)0.0437 (13)0.0290 (11)−0.0191 (11)0.0039 (9)−0.0125 (10)

Geometric parameters (Å, °)

Cl1—C31.736 (2)C9—C131.488 (3)
N1—C101.341 (3)C10—C111.417 (3)
N1—C91.345 (3)C11—C121.434 (3)
C1—C21.382 (3)C13—C141.365 (4)
C1—C61.392 (3)C13—C221.432 (3)
C1—H1B0.9300C14—C151.414 (4)
Cl2—C51.736 (2)C14—H14A0.9300
N2—C101.347 (3)C15—C161.356 (4)
N2—H2A0.84 (3)C15—H15A0.9300
N2—H2B0.86 (3)C16—C171.406 (4)
C2—C31.365 (4)C16—H16A0.9300
C2—H2C0.9300C17—C181.421 (4)
C3—C41.376 (3)C17—C221.421 (3)
N3—C121.139 (3)C18—C191.358 (4)
C4—C51.388 (3)C18—H18A0.9300
C4—H4A0.9300C19—C201.394 (4)
C5—C61.387 (3)C19—H19A0.9300
C6—C71.490 (3)C20—C211.360 (4)
C7—C81.386 (3)C20—H20A0.9300
C7—C111.390 (3)C21—C221.405 (3)
C8—C91.384 (3)C21—H21A0.9300
C8—H8A0.9300
C10—N1—C9118.57 (19)C7—C11—C10119.3 (2)
C2—C1—C6121.8 (2)C7—C11—C12123.0 (2)
C2—C1—H1B119.1C10—C11—C12117.6 (2)
C6—C1—H1B119.1N3—C12—C11175.9 (3)
C10—N2—H2A117.4 (17)C14—C13—C22120.1 (2)
C10—N2—H2B118.6 (19)C14—C13—C9118.0 (2)
H2A—N2—H2B118 (2)C22—C13—C9121.7 (2)
C3—C2—C1118.7 (2)C13—C14—C15121.0 (3)
C3—C2—H2C120.7C13—C14—H14A119.5
C1—C2—H2C120.7C15—C14—H14A119.5
C2—C3—C4122.0 (2)C16—C15—C14119.8 (3)
C2—C3—Cl1119.0 (2)C16—C15—H15A120.1
C4—C3—Cl1118.96 (19)C14—C15—H15A120.1
C3—C4—C5118.3 (2)C15—C16—C17121.2 (3)
C3—C4—H4A120.8C15—C16—H16A119.4
C5—C4—H4A120.8C17—C16—H16A119.4
C6—C5—C4121.7 (2)C16—C17—C18121.9 (3)
C6—C5—Cl2121.38 (17)C16—C17—C22119.7 (2)
C4—C5—Cl2116.88 (19)C18—C17—C22118.4 (2)
C5—C6—C1117.4 (2)C19—C18—C17121.3 (3)
C5—C6—C7123.1 (2)C19—C18—H18A119.3
C1—C6—C7119.5 (2)C17—C18—H18A119.3
C8—C7—C11118.0 (2)C18—C19—C20119.6 (3)
C8—C7—C6121.8 (2)C18—C19—H19A120.2
C11—C7—C6120.2 (2)C20—C19—H19A120.2
C9—C8—C7119.8 (2)C21—C20—C19120.8 (3)
C9—C8—H8A120.1C21—C20—H20A119.6
C7—C8—H8A120.1C19—C20—H20A119.6
N1—C9—C8122.7 (2)C20—C21—C22121.4 (2)
N1—C9—C13115.38 (19)C20—C21—H21A119.3
C8—C9—C13121.8 (2)C22—C21—H21A119.3
N1—C10—N2117.0 (2)C21—C22—C17118.2 (2)
N1—C10—C11121.53 (19)C21—C22—C13123.8 (2)
N2—C10—C11121.4 (2)C17—C22—C13118.0 (2)
C6—C1—C2—C30.3 (4)N2—C10—C11—C7−176.9 (2)
C1—C2—C3—C41.1 (4)N1—C10—C11—C12−174.4 (2)
C1—C2—C3—Cl1−178.1 (2)N2—C10—C11—C125.6 (3)
C2—C3—C4—C5−1.3 (4)C7—C11—C12—N3−155 (4)
Cl1—C3—C4—C5177.91 (18)C10—C11—C12—N322 (4)
C3—C4—C5—C60.1 (4)N1—C9—C13—C14−123.8 (2)
C3—C4—C5—Cl2179.22 (19)C8—C9—C13—C1451.5 (3)
C4—C5—C6—C11.2 (4)N1—C9—C13—C2250.6 (3)
Cl2—C5—C6—C1−177.86 (18)C8—C9—C13—C22−134.1 (2)
C4—C5—C6—C7−178.2 (2)C22—C13—C14—C15−3.2 (4)
Cl2—C5—C6—C72.7 (3)C9—C13—C14—C15171.4 (3)
C2—C1—C6—C5−1.4 (4)C13—C14—C15—C16−0.9 (5)
C2—C1—C6—C7178.0 (2)C14—C15—C16—C172.3 (5)
C5—C6—C7—C859.9 (3)C15—C16—C17—C18179.4 (3)
C1—C6—C7—C8−119.5 (3)C15—C16—C17—C220.4 (5)
C5—C6—C7—C11−123.1 (3)C16—C17—C18—C19−177.6 (3)
C1—C6—C7—C1157.5 (3)C22—C17—C18—C191.3 (4)
C11—C7—C8—C90.3 (4)C17—C18—C19—C202.2 (5)
C6—C7—C8—C9177.4 (2)C18—C19—C20—C21−3.1 (4)
C10—N1—C9—C8−4.0 (3)C19—C20—C21—C220.4 (4)
C10—N1—C9—C13171.27 (19)C20—C21—C22—C173.1 (4)
C7—C8—C9—N13.5 (4)C20—C21—C22—C13−177.5 (2)
C7—C8—C9—C13−171.4 (2)C16—C17—C22—C21175.1 (2)
C9—N1—C10—N2−179.4 (2)C18—C17—C22—C21−3.9 (4)
C9—N1—C10—C110.7 (3)C16—C17—C22—C13−4.4 (4)
C8—C7—C11—C10−3.4 (3)C18—C17—C22—C13176.7 (2)
C6—C7—C11—C10179.4 (2)C14—C13—C22—C21−173.7 (2)
C8—C7—C11—C12173.9 (2)C9—C13—C22—C2112.0 (3)
C6—C7—C11—C12−3.3 (3)C14—C13—C22—C175.7 (3)
N1—C10—C11—C73.1 (3)C9—C13—C22—C17−168.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.85 (3)2.19 (3)3.034 (3)176 (2)
C4—H4A···N3ii0.932.623.488 (4)155

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2258).

References

  • Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Mantri, M., Graaf, O., Veldhoven, J. & IJzerman, A. P. (2008). J. Med. Chem. 51, 4449–4455. [PubMed]
  • Mkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2006). Angew. Chem. Int. Ed. 45, 489–491. [PubMed]
  • Moreau, J. L. & Huber, G. (1999). Brain. Res. Rev. 31, 65–82. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography