PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2011 January 1; 67(Pt 1): o197.
Published online 2010 December 18. doi:  10.1107/S160053681005258X
PMCID: PMC3050373

N-(2-Oxo-2-phenyl­acet­yl)benzamide

Abstract

In the title compound, C15H11NO3, the two essentially planar benzaldehyde groups [maximum deviations = 0.0487 (12) and 0.0205 (10) Å] are inclined at a dihedral angle of 72.64 (6)° with respect to each other. The bridging C—C—N—C torsion angle is 22.58 (18)°. In the crystal, inter­molecular bifurcated acceptor N—H(...)O and C—H(...)O hydrogen bonds link inversion-related mol­ecules into dimers incorporating R 1 2(7) and R 2 2(8) ring motifs. The crystal structure is further stabilized by weak inter­molecular C—H(...)π inter­actions.

Related literature

For general background to and applications of the title benzamide compound, see: Haffner & Ulrich (2010 [triangle]); Lavanya & Rao (2010 [triangle]); Magarl et al. (2010 [triangle]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995 [triangle]). For related benzamide structures, see: Jotani et al. (2010 [triangle]); Fu et al. (1998 [triangle]); Gallagher et al. (2009 [triangle]). For related diketone structures, see: Cheah et al. (2008 [triangle]); Hartung et al. (2004 [triangle]). For standard bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-67-0o197-scheme1.jpg

Experimental

Crystal data

  • C15H11NO3
  • M r = 253.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-0o197-efi1.jpg
  • a = 5.7215 (1) Å
  • b = 10.7241 (1) Å
  • c = 20.6710 (3) Å
  • β = 98.255 (1)°
  • V = 1255.19 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.36 × 0.33 × 0.27 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.967, T max = 0.975
  • 13904 measured reflections
  • 3624 independent reflections
  • 2549 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.124
  • S = 1.03
  • 3624 reflections
  • 176 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681005258X/lh5192sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681005258X/lh5192Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and JHG thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). Financial support from the Fok Ying Tung Education Foundation (114012) is also acknowledged.

supplementary crystallographic information

Comment

Benzamides have been reported to correlate with many pharmacology processes such as anti-emetic, anti-psychotic and anti-arrythmic activities. Various N-substituted derivatives of benzamide are reported to possess anti-convulsant activity (Magarl et al., 2010). Recently, Haffner & Ulrich (2010) reported that some N-substituted derivatives of benzamide can block the Kv1.3 ion channel. Moreover, N-substituted benzamides have been scanned for anti-microbial and anti-oxidant activities (Lavanya & Rao, 2010). The crystal structures of N-(2-oxo-2H-chromen-3-yl)benzamide (Jotani et al., 2010), N-phenyl-N-(phenylthioxomethyl)benzamide (Fu et al., 1998) and 2-fluoro-N-(2-fluorobenzoyl)-N-(2-pyridyl)benzamide (Gallagher et al., 2009) have been reported. The title compound which contains the N-substituted benzamide has a potential use in biochemical and pharmaceutical fields. Due to the importance of the N-substituted benzamide derivatives, we report here the crystal structure of the title compound.

In the title compound (Fig. 1), the two benzaldehyde moieties (C1-C7/O1 and C9-C15/O3) are essentially planar, with maximum deviations of -0.0483 (12) Å at atom C7 and -0.0205 (10) Å at atom O3, respectively. The whole molecule is not planar, as indicated by the C7–C8–N1–C9 torsion angle of 22.58 (18)° and the dihedral angle formed between the two benzaldehyde moieties of 72.64 (6)°. The diketonic C7—C8 bond length [1.5401 (16) Å] is observed to be longer than expected value for a hybridized Csp2—Csp2 bond (Allen et al., 1987), and is consistent to those observed in related diketone structures (Cheah et al., 2008; Hartung et al., 2004). All other geometrical parameters are comparable to those related N-substituted benzamide structures (Jotani et al., 2010; Fu et al., 1998; Gallagher et al., 2009).

In the crystal structure, intermolecular bifurcated acceptor N1—H1N1···O2i and C11—H11A···O2i hydrogen bonds (Table 1) link inversion-related molecules into hydrogen-bonded dimers incorporating R21(7) and R22(8) ring motifs (Fig. 2, Bernstein et al., 1995). Further stabilization of the crystal structure is provided by weak intermolecular C14—H14A···Cg1ii interactions (Table 1) involving the centroid of the C1-C6 benzene ring.

Experimental

The title compound was obtained in the photoreaction of 2,5-diphenyloxazole in visible light. The compound was purified by flash column chromatography. Good quality single crystals suitable for X-ray analysis were obtained from slow evaporation of a 1:1 solution of acetone and petroleum ether.

Refinement

Atom H1N1 was located in a difference Fourier map and allowed to refine freely [N1—H1N1 = 0.879 (16) Å]. The remaining H atoms were placed in calculated positions, with C—H = 0.93 Å, and refined using a riding-model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30 % probability level.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis, showing hydrogen-bonded dimers lying parallel to the bc plane. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C15H11NO3F(000) = 528
Mr = 253.25Dx = 1.340 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3981 reflections
a = 5.7215 (1) Åθ = 2.8–28.7°
b = 10.7241 (1) ŵ = 0.09 mm1
c = 20.6710 (3) ÅT = 293 K
β = 98.255 (1)°Block, colourless
V = 1255.19 (3) Å30.36 × 0.33 × 0.27 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3624 independent reflections
Radiation source: fine-focus sealed tube2549 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −8→7
Tmin = 0.967, Tmax = 0.975k = −15→14
13904 measured reflectionsl = −28→29

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0558P)2 + 0.1732P] where P = (Fo2 + 2Fc2)/3
3624 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.09882 (19)0.34229 (9)0.84139 (5)0.0559 (3)
O20.55891 (18)0.43948 (9)0.92521 (5)0.0541 (3)
O30.15170 (19)0.15978 (8)0.95510 (5)0.0526 (3)
N10.2998 (2)0.34922 (9)0.98421 (5)0.0425 (3)
C10.3026 (3)0.14025 (14)0.78023 (7)0.0555 (4)
H1A0.15440.16680.76070.067*
C20.4136 (4)0.04282 (16)0.75346 (8)0.0682 (5)
H2A0.33930.00290.71610.082*
C30.6340 (3)0.00455 (15)0.78184 (8)0.0658 (5)
H3A0.7078−0.06130.76360.079*
C40.7464 (3)0.06306 (15)0.83711 (9)0.0632 (4)
H4A0.89640.03750.85570.076*
C50.6352 (3)0.15980 (13)0.86475 (7)0.0520 (3)
H5A0.70980.19880.90230.062*
C60.4132 (2)0.19867 (11)0.83662 (6)0.0409 (3)
C70.2867 (2)0.29847 (11)0.86611 (6)0.0399 (3)
C80.4020 (2)0.36431 (10)0.92888 (6)0.0401 (3)
C90.1548 (2)0.24758 (10)0.99227 (6)0.0387 (3)
C100.0059 (2)0.25238 (10)1.04531 (6)0.0383 (3)
C11−0.0018 (3)0.35326 (11)1.08721 (6)0.0462 (3)
H11A0.09170.42301.08330.055*
C12−0.1486 (3)0.34962 (13)1.13475 (7)0.0542 (4)
H12A−0.15240.41681.16300.065*
C13−0.2892 (3)0.24711 (14)1.14054 (8)0.0612 (4)
H13A−0.38760.24531.17270.073*
C14−0.2843 (3)0.14727 (14)1.09876 (9)0.0648 (4)
H14A−0.38020.07841.10240.078*
C15−0.1369 (3)0.14978 (12)1.05150 (7)0.0527 (4)
H15A−0.13320.08211.02350.063*
H1N10.337 (3)0.4056 (15)1.0148 (8)0.055 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0567 (6)0.0528 (6)0.0559 (6)−0.0008 (5)0.0003 (5)0.0004 (4)
O20.0593 (6)0.0509 (5)0.0563 (6)−0.0261 (5)0.0226 (5)−0.0140 (4)
O30.0720 (7)0.0380 (4)0.0527 (5)−0.0164 (4)0.0258 (5)−0.0117 (4)
N10.0522 (7)0.0383 (5)0.0390 (5)−0.0163 (5)0.0128 (5)−0.0091 (4)
C10.0681 (10)0.0593 (8)0.0386 (6)−0.0096 (7)0.0057 (6)−0.0075 (6)
C20.0970 (14)0.0671 (10)0.0431 (7)−0.0139 (9)0.0193 (8)−0.0190 (7)
C30.0892 (13)0.0541 (8)0.0629 (9)−0.0041 (8)0.0409 (9)−0.0113 (7)
C40.0576 (9)0.0647 (9)0.0715 (10)0.0001 (7)0.0234 (8)−0.0067 (8)
C50.0504 (8)0.0545 (8)0.0522 (8)−0.0094 (6)0.0112 (6)−0.0112 (6)
C60.0483 (7)0.0412 (6)0.0352 (6)−0.0120 (5)0.0129 (5)−0.0029 (5)
C70.0466 (7)0.0372 (6)0.0366 (6)−0.0123 (5)0.0082 (5)0.0006 (4)
C80.0454 (7)0.0333 (5)0.0431 (6)−0.0090 (5)0.0112 (5)−0.0045 (4)
C90.0455 (7)0.0334 (5)0.0378 (6)−0.0068 (5)0.0077 (5)−0.0012 (4)
C100.0444 (7)0.0335 (5)0.0380 (6)−0.0031 (5)0.0093 (5)0.0024 (4)
C110.0559 (8)0.0383 (6)0.0459 (7)−0.0074 (6)0.0128 (6)−0.0036 (5)
C120.0681 (10)0.0472 (7)0.0510 (8)0.0018 (7)0.0217 (7)−0.0048 (6)
C130.0729 (10)0.0553 (8)0.0634 (9)0.0031 (7)0.0371 (8)0.0073 (7)
C140.0778 (11)0.0457 (7)0.0793 (11)−0.0143 (7)0.0402 (9)0.0038 (7)
C150.0675 (9)0.0357 (6)0.0598 (8)−0.0096 (6)0.0261 (7)−0.0030 (5)

Geometric parameters (Å, °)

O1—C71.2164 (16)C5—H5A0.9300
O2—C81.2170 (14)C6—C71.4723 (18)
O3—C91.2138 (14)C7—C81.5401 (16)
N1—C81.3667 (16)C9—C101.4828 (17)
N1—C91.3943 (15)C10—C151.3873 (17)
N1—H1N10.879 (16)C10—C111.3904 (17)
C1—C21.379 (2)C11—C121.3818 (19)
C1—C61.3929 (18)C11—H11A0.9300
C1—H1A0.9300C12—C131.378 (2)
C2—C31.375 (3)C12—H12A0.9300
C2—H2A0.9300C13—C141.378 (2)
C3—C41.379 (2)C13—H13A0.9300
C3—H3A0.9300C14—C151.380 (2)
C4—C51.383 (2)C14—H14A0.9300
C4—H4A0.9300C15—H15A0.9300
C5—C61.383 (2)
C8—N1—C9121.74 (10)O2—C8—N1122.59 (11)
C8—N1—H1N1115.6 (10)O2—C8—C7118.81 (11)
C9—N1—H1N1122.6 (10)N1—C8—C7117.88 (10)
C2—C1—C6119.74 (16)O3—C9—N1119.05 (11)
C2—C1—H1A120.1O3—C9—C10122.50 (10)
C6—C1—H1A120.1N1—C9—C10118.44 (10)
C3—C2—C1120.14 (15)C15—C10—C11119.20 (12)
C3—C2—H2A119.9C15—C10—C9116.69 (10)
C1—C2—H2A119.9C11—C10—C9124.09 (11)
C2—C3—C4120.52 (15)C12—C11—C10119.85 (12)
C2—C3—H3A119.7C12—C11—H11A120.1
C4—C3—H3A119.7C10—C11—H11A120.1
C3—C4—C5119.75 (16)C13—C12—C11120.44 (13)
C3—C4—H4A120.1C13—C12—H12A119.8
C5—C4—H4A120.1C11—C12—H12A119.8
C4—C5—C6120.10 (14)C12—C13—C14120.04 (14)
C4—C5—H5A119.9C12—C13—H13A120.0
C6—C5—H5A119.9C14—C13—H13A120.0
C5—C6—C1119.73 (13)C13—C14—C15119.87 (13)
C5—C6—C7121.43 (11)C13—C14—H14A120.1
C1—C6—C7118.81 (13)C15—C14—H14A120.1
O1—C7—C6124.36 (11)C14—C15—C10120.59 (13)
O1—C7—C8115.00 (11)C14—C15—H15A119.7
C6—C7—C8120.35 (11)C10—C15—H15A119.7
C6—C1—C2—C3−0.8 (2)O1—C7—C8—N171.15 (15)
C1—C2—C3—C4−0.2 (3)C6—C7—C8—N1−114.71 (13)
C2—C3—C4—C50.9 (2)C8—N1—C9—O313.09 (19)
C3—C4—C5—C6−0.7 (2)C8—N1—C9—C10−165.59 (12)
C4—C5—C6—C1−0.2 (2)O3—C9—C10—C151.00 (19)
C4—C5—C6—C7177.86 (13)N1—C9—C10—C15179.64 (12)
C2—C1—C6—C51.0 (2)O3—C9—C10—C11−177.49 (13)
C2—C1—C6—C7−177.13 (13)N1—C9—C10—C111.15 (19)
C5—C6—C7—O1174.79 (12)C15—C10—C11—C120.8 (2)
C1—C6—C7—O1−7.10 (19)C9—C10—C11—C12179.20 (13)
C5—C6—C7—C81.23 (18)C10—C11—C12—C13−0.6 (2)
C1—C6—C7—C8179.33 (11)C11—C12—C13—C140.0 (3)
C9—N1—C8—O2−167.27 (13)C12—C13—C14—C150.5 (3)
C9—N1—C8—C722.58 (18)C13—C14—C15—C10−0.4 (3)
O1—C7—C8—O2−99.38 (15)C11—C10—C15—C14−0.3 (2)
C6—C7—C8—O274.76 (16)C9—C10—C15—C14−178.82 (14)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.879 (16)2.107 (16)2.9765 (14)170.0 (15)
C11—H11A···O2i0.932.513.4080 (18)162
C14—H14A···Cg1ii0.932.863.6592 (18)145

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5192).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cheah, W. C., Black, D. S., Goh, W. K. & Kumar, N. (2008). Tetrahedron Lett. 49, 2965–2968.
  • Fu, T. Y., Scheffer, J. R. & Trotter, J. (1998). Acta Cryst. C54, 101–102.
  • Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009). Acta Cryst. E65, o486–o487. [PMC free article] [PubMed]
  • Haffner, C. D. & Ulrich, J. (2010). Bioorg. Med. Chem. Lett. 20, 6989–6992. [PubMed]
  • Hartung, J., Špehar, K., Svoboda, I. & Fuess, H. (2004). Acta Cryst. E60, o750–o751.
  • Jotani, M. M., Baldaniya, B. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o778. [PMC free article] [PubMed]
  • Lavanya, P. & Rao, C. V. (2010). J. Chem. Pharm. Res. 2, 25–32.
  • Magarl, D. D., Tapas, A. R. & Ambre, P. K. (2010). Pharma Chem. 2, 142–147.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography