PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2011 January 1; 67(Pt 1): m57.
Published online 2010 December 11. doi:  10.1107/S1600536810051160
PMCID: PMC3050288

Chlorido(2-{1-[(2-morpholino­eth­yl)imino]­eth­yl}phenolato-κ3 N,N′,O)copper(II)

Abstract

In the title compound, [CuCl(C14H19N2O2)], the CuII ion is four-coordinated by one deprotonated N,N′,O-tridentate Schiff base and one chloride ion in a distorted square-planar geometry. In the crystal, adjacent mol­ecules are linked via C—H(...)Cl and C—H(...)O inter­actions, forming infinite layers parallel to the (100) plane. The structure was determined from a non-merohedrally twined crystal [twin ratio 0.777 (3):0.223 (3)].

Related literature

For the crystal structures of similar CuII complexes, see: Elias et al. (1982 [triangle]); Ikmal Hisham et al. (2009 [triangle]); Wang & You (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-67-00m57-scheme1.jpg

Experimental

Crystal data

  • [CuCl(C14H19N2O2)]
  • M r = 346.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-67-00m57-efi1.jpg
  • a = 10.7122 (4) Å
  • b = 17.1657 (7) Å
  • c = 7.7638 (3) Å
  • β = 93.493 (3)°
  • V = 1424.97 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.72 mm−1
  • T = 100 K
  • 0.31 × 0.22 × 0.07 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.617, T max = 0.889
  • 10834 measured reflections
  • 2506 independent reflections
  • 2313 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.096
  • S = 1.10
  • 2506 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.81 e Å−3
  • Δρmin = −1.15 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810051160/gk2329sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810051160/gk2329Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank University of Malaya for funding this study (UMRG grant RG024/09BIO).

supplementary crystallographic information

Comment

The title compound was obtained through the reaction of the Schiff base ligand, prepared in situ, with copper(II) chloride. Upon complexation, the Schiff base loses its phenolic hydrogen to chelate the CuII ion as an anionic tridentate ligand. One chloride atom completes the distorted square-planar geometry of the complex. The deviation from the regular geometry is evident from the disposition of the metal atom 0.0494 (15) Å out of the N1—N2—O1—Cl1 coordination plane. The Cu—N, Cu—O and Cu—Cl bond lengths in the present complex are comparable with those in similar structures [Elias et al., 1982; Ikmal Hisham et al., 2009; Wang & You, 2007]. In the crystal, C—H···Cl and C—H···O interactions within the range for normal hydrogen bonds, link adjacent molecules into two-dimensional networks parallel to the bc plane (Fig. 2). In addition, intramolecular C—H···Cl hydrogen bonds occurs.

Experimental

A mixture of 2-hydroxyacetophenone (0.5 g, 3.7 mmol) and 4-(2-aminoethyl)morpholine (0.48 g, 3.7 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of copper(II) chloride dihydrate (0.63 g, 3.7 mmol) in a minimum amount of ethanol. The resulting solution was refluxed for 30 min, then left at room temperature. The crystals of the title complex were obtained after a few days.

Refinement

The hydrogen atoms were placed at calculated positions (C—H 0.95 - 0.99 Å) and were treated as riding on their parent atoms with Uiso(H) set to 1.2–1.5 Ueq(C).The structure was a determined from a non-merohedrally twinned specimen; twin law in reciprocal space 1 0 0.168 0 - 1 0 0 0 - 1; SHELXL-97 (Sheldrick, 2008) BASF parameter 0.223 (3).

Figures

Fig. 1.
Displacement ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
The crystal packing of the title compound down the crystallographic a axis.

Crystal data

[CuCl(C14H19N2O2)]F(000) = 716
Mr = 346.30Dx = 1.614 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4663 reflections
a = 10.7122 (4) Åθ = 2.4–28.8°
b = 17.1657 (7) ŵ = 1.72 mm1
c = 7.7638 (3) ÅT = 100 K
β = 93.493 (3)°Plate, blue
V = 1424.97 (10) Å30.31 × 0.22 × 0.07 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2506 independent reflections
Radiation source: fine-focus sealed tube2313 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.617, Tmax = 0.889k = −20→20
10834 measured reflectionsl = −6→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.P)2 + 6.7834P] where P = (Fo2 + 2Fc2)/3
2506 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = −1.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.51091 (4)0.13385 (3)0.49248 (6)0.01131 (15)
Cl10.35700 (9)0.11054 (6)0.28748 (12)0.0166 (2)
O10.6167 (3)0.17572 (17)0.3321 (4)0.0177 (6)
O20.1491 (3)0.09423 (18)0.8080 (4)0.0209 (7)
N10.6497 (3)0.1116 (2)0.6556 (4)0.0152 (8)
N20.3974 (3)0.12315 (19)0.6943 (4)0.0125 (7)
C10.7370 (4)0.1654 (2)0.3291 (5)0.0138 (8)
C20.7957 (4)0.1964 (2)0.1849 (6)0.0169 (9)
H20.74700.22530.10080.020*
C30.9208 (4)0.1858 (2)0.1639 (6)0.0195 (10)
H30.95710.20630.06480.023*
C40.9953 (4)0.1448 (3)0.2879 (6)0.0224 (10)
H41.08160.13650.27220.027*
C50.9423 (4)0.1168 (2)0.4322 (6)0.0168 (9)
H50.99390.09030.51730.020*
C60.8129 (4)0.1261 (2)0.4589 (5)0.0140 (8)
C70.7669 (4)0.1010 (2)0.6241 (6)0.0141 (9)
C80.8561 (4)0.0640 (3)0.7551 (6)0.0217 (10)
H8A0.80920.03530.83910.033*
H8B0.90680.10440.81480.033*
H8C0.91100.02790.69740.033*
C90.6058 (4)0.0955 (3)0.8300 (5)0.0171 (9)
H9A0.66960.11230.91990.021*
H9B0.59110.03890.84400.021*
C100.4853 (4)0.1402 (3)0.8475 (6)0.0206 (9)
H10A0.44670.12450.95490.025*
H10B0.50300.19670.85390.025*
C110.3417 (4)0.0438 (2)0.6993 (5)0.0122 (8)
H11A0.40890.00520.72460.015*
H11B0.30100.03130.58470.015*
C120.2454 (4)0.0379 (2)0.8359 (5)0.0170 (9)
H12A0.2082−0.01490.83270.020*
H12B0.28750.04570.95170.020*
C130.2030 (4)0.1704 (3)0.8178 (6)0.0204 (10)
H13A0.24620.17800.93290.025*
H13B0.13590.21000.80330.025*
C140.2951 (4)0.1817 (2)0.6801 (6)0.0187 (9)
H14A0.25060.17750.56490.022*
H14B0.33150.23460.69060.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0114 (3)0.0124 (2)0.0102 (2)−0.0004 (2)0.00097 (19)0.00130 (19)
Cl10.0189 (5)0.0203 (5)0.0101 (5)−0.0007 (4)−0.0027 (4)0.0009 (4)
O10.0153 (15)0.0196 (16)0.0184 (16)−0.0014 (12)0.0031 (12)0.0058 (13)
O20.0119 (15)0.0287 (17)0.0220 (17)0.0000 (13)0.0014 (13)0.0008 (14)
N10.0170 (18)0.0164 (18)0.0122 (18)−0.0036 (14)0.0004 (15)0.0011 (14)
N20.0171 (17)0.0128 (17)0.0073 (17)−0.0002 (14)−0.0006 (13)0.0012 (13)
C10.015 (2)0.0110 (19)0.015 (2)−0.0025 (16)0.0002 (16)−0.0040 (16)
C20.022 (2)0.012 (2)0.017 (2)−0.0015 (17)0.0020 (18)0.0000 (17)
C30.025 (2)0.016 (2)0.018 (2)−0.0056 (18)0.0070 (18)−0.0009 (18)
C40.016 (2)0.020 (2)0.032 (3)−0.0030 (18)0.0042 (19)−0.004 (2)
C50.015 (2)0.014 (2)0.021 (2)0.0006 (16)0.0000 (18)−0.0024 (17)
C60.016 (2)0.011 (2)0.015 (2)0.0001 (16)0.0013 (17)−0.0023 (16)
C70.015 (2)0.0091 (19)0.018 (2)−0.0009 (16)−0.0015 (17)−0.0016 (16)
C80.013 (2)0.031 (3)0.021 (2)0.0014 (19)0.0002 (18)0.006 (2)
C90.018 (2)0.026 (2)0.007 (2)−0.0061 (18)−0.0030 (17)0.0033 (17)
C100.020 (2)0.022 (2)0.020 (2)−0.0029 (19)0.0016 (19)−0.0059 (19)
C110.017 (2)0.0096 (19)0.010 (2)−0.0004 (16)0.0003 (16)0.0004 (15)
C120.018 (2)0.020 (2)0.014 (2)−0.0048 (17)−0.0005 (17)0.0006 (17)
C130.017 (2)0.022 (2)0.022 (2)0.0066 (18)0.0015 (18)−0.0004 (19)
C140.026 (2)0.013 (2)0.016 (2)0.0030 (18)0.0002 (18)0.0008 (17)

Geometric parameters (Å, °)

Cu1—O11.877 (3)C5—H50.9500
Cu1—N11.932 (3)C6—C71.466 (6)
Cu1—N22.050 (3)C7—C81.495 (6)
Cu1—Cl12.2565 (11)C8—H8A0.9800
O1—C11.302 (5)C8—H8B0.9800
O2—C121.422 (5)C8—H8C0.9800
O2—C131.430 (5)C9—C101.515 (6)
N1—C71.306 (5)C9—H9A0.9900
N1—C91.486 (5)C9—H9B0.9900
N2—C141.485 (5)C10—H10A0.9900
N2—C111.488 (5)C10—H10B0.9900
N2—C101.500 (5)C11—C121.527 (6)
C1—C21.421 (6)C11—H11A0.9900
C1—C61.426 (6)C11—H11B0.9900
C2—C31.373 (6)C12—H12A0.9900
C2—H20.9500C12—H12B0.9900
C3—C41.401 (6)C13—C141.511 (6)
C3—H30.9500C13—H13A0.9900
C4—C51.374 (6)C13—H13B0.9900
C4—H40.9500C14—H14A0.9900
C5—C61.423 (6)C14—H14B0.9900
O1—Cu1—N192.21 (14)H8A—C8—H8B109.5
O1—Cu1—N2162.15 (13)C7—C8—H8C109.5
N1—Cu1—N287.14 (14)H8A—C8—H8C109.5
O1—Cu1—Cl192.57 (10)H8B—C8—H8C109.5
N1—Cu1—Cl1158.07 (11)N1—C9—C10107.8 (3)
N2—Cu1—Cl194.66 (10)N1—C9—H9A110.1
C1—O1—Cu1126.7 (3)C10—C9—H9A110.1
C12—O2—C13109.1 (3)N1—C9—H9B110.1
C7—N1—C9120.4 (4)C10—C9—H9B110.1
C7—N1—Cu1127.9 (3)H9A—C9—H9B108.5
C9—N1—Cu1111.1 (3)N2—C10—C9109.1 (3)
C14—N2—C11109.0 (3)N2—C10—H10A109.9
C14—N2—C10110.6 (3)C9—C10—H10A109.9
C11—N2—C10113.0 (3)N2—C10—H10B109.9
C14—N2—Cu1110.6 (2)C9—C10—H10B109.9
C11—N2—Cu1111.1 (2)H10A—C10—H10B108.3
C10—N2—Cu1102.4 (2)N2—C11—C12111.6 (3)
O1—C1—C2116.7 (4)N2—C11—H11A109.3
O1—C1—C6125.1 (4)C12—C11—H11A109.3
C2—C1—C6118.2 (4)N2—C11—H11B109.3
C3—C2—C1121.8 (4)C12—C11—H11B109.3
C3—C2—H2119.1H11A—C11—H11B108.0
C1—C2—H2119.1O2—C12—C11111.3 (3)
C2—C3—C4120.3 (4)O2—C12—H12A109.4
C2—C3—H3119.9C11—C12—H12A109.4
C4—C3—H3119.9O2—C12—H12B109.4
C5—C4—C3119.3 (4)C11—C12—H12B109.4
C5—C4—H4120.3H12A—C12—H12B108.0
C3—C4—H4120.3O2—C13—C14111.0 (4)
C4—C5—C6122.3 (4)O2—C13—H13A109.4
C4—C5—H5118.9C14—C13—H13A109.4
C6—C5—H5118.9O2—C13—H13B109.4
C5—C6—C1118.0 (4)C14—C13—H13B109.4
C5—C6—C7118.5 (4)H13A—C13—H13B108.0
C1—C6—C7123.3 (4)N2—C14—C13111.8 (3)
N1—C7—C6120.1 (4)N2—C14—H14A109.3
N1—C7—C8120.9 (4)C13—C14—H14A109.3
C6—C7—C8119.0 (4)N2—C14—H14B109.3
C7—C8—H8A109.5C13—C14—H14B109.3
C7—C8—H8B109.5H14A—C14—H14B107.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14A···Cl10.992.753.386 (4)123
C11—H11B···Cl10.992.783.409 (4)122
C14—H14B···Cl1i0.992.773.713 (4)159
C10—H10B···O1i0.992.523.465 (5)160
C9—H9B···Cl1ii0.992.833.680 (5)144

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2329).

References

  • Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Elias, H., Hilms, E. & Paulus, H. (1982). Z. Naturforsch. Teil B, 37, 1266–1273.
  • Ikmal Hisham, N. A., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, m870. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, J. & You, Z. (2007). Acta Cryst. E63, m1200–m1201.
  • Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography